Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information. including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 2303 5e. TASK NUMBER 5f. WORK UNIT NUMBER 345709 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S AFRL/PRS NUMBER(S) 5 Pollux Drive Edwards AFB CA 93524-7048 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 20030129 225 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 18. NUMBER 19a. NAME OF RESPONSIBLE 17. LIMITATION OF ABSTRACT OF PAGES PERSON Leilani Richardson a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) (661) 275-5015 Unclassified Unclassified Unclassified Standard Form 298 (Rev. 8-98) REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Prescribed by ANSI Std. 239.18 BORMERCE MEMORANDUM FOR PRS (In-House/Contractor Publication) FROM: PROI (STINFO) 01 Mar 2001 SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-2001-042 Vij, Ashwani (ERC); Wilson, W.I, et al., "Polynitrogen Chemistry, Synthesis, Characterization, and Crystal Structure of Surprisingly Stable Fluorantimonate Salts of N₅⁺" Journal of American Chemical Society (Deadline: N/A) (Statement A) # Polynitrogen Chemistry. Synthesis, Characterization, and Crystal Structure of Surprisingly Stable Fluoroantimonate Salts of N_5^+ Ashwani Vij, † William W. Wilson, † Vandana Vij, † Fook S. Tham, § Jeffrey A. Sheehy, † and Karl O. Christe, *†‡ on centering Propulsion Sciences and Advanced Concepts Division, Air Force Research Laboratory (AFRL/PRS), Edwards AFB, California 93524, Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089, and Department of Chemistry, University of California, Riverside, CA 92521 #### **Abstract** The new N_5^+ salt, N_5^+ SbF₆, was prepared from N_2F^+ SbF₆ and HN₃ in anhydrous HF solution. The white solid is surprisingly stable, decomposing only at 70 °C, and is relatively insensitive to impact. Its vibrational spectrum exhibits all nine fundamentals with frequencies that are in excellent agreement with the theoretical calculations for a five-atomic V-shaped ion of C_{2v} symmetry. The N_5^+ Sb₂F₁₁ salt was also prepared and its crystal structure was determined. The geometry previously predicted for free gaseous N_5^+ from theoretical calculations was confirmed within experimental error. The Sb₂F₁₁ anions exhibit an unusual geometry with eclipsed SbF₄ groups due to inter-ionic bridging with the N_5^+ cations. The N_5^+ cation is a powerful one-electron oxidizer. Its electron affinity falls between 11.0 and 12.08 eV because it readily oxidizes NO to NO⁺ and NO₂ to NO₂⁺ but fails to oxidize Xe or O₂. #### Introduction The recent discovery of $N_5^+AsF_6^-$ as a marginally stable compound that can be prepared on a macroscopic scale is quite remarkable. It represented only the third readily accessible homoleptic polynitrogen compound besides N_2 and N_3^- and as such has received much public acclaim. Since N_5AsF_6 is only marginally stable and had given rise to some explosions, it was of great interest to search for more stable N_5^+ salts in order to allow a more thorough characterization of this fascinating cation and to provide a suitable starting material for the pursuit of nitrogen allotropes. In this paper, the synthesis and characterization of surprisingly stable fluoroantimonate salts of N_5^+ and the crystal structure of $N_5^+Sb_2F_{11}^-$ are reported. ### Experimental Caution! HN_3 , azides and polynitrogen compounds are highly endothermic and can decompose explosively. They should be handled only on a small scale with appropriate safety precautions (face shields, leather gloves, and protective clothing). Condensation of neat HN_3 at -196 °C into Teflon ampoules containing oxidizers has repeatedly resulted in explosions upon condensation or melting of the HN_3 . Materials and Apparatus. All reactions were carried out in ¾ inch o. d. Teflon-FEP or -PFA ampoules that contained Teflon coated magnetic stirring bars and were closed by stainless steel valves. Volatile materials were handled on a stainless steel / Teflon-FEP vacuum line. Nonvolatile solids were handled in the dry nitrogen atmosphere of a glove box. HN₃ was generated and handled on a Pyrex glass vacuum line equipped with grease-free Kontes glass-Teflon valves. Infrared spectra were recorded on a Mattson Galaxy FT-IR spectrometer using dry powders pressed between AgCl windows in an Econo press (Barnes Engineering Co.). Raman spectra were recorded on a Bruker Equinox 55 FT-RA spectrometer using a Nd-Yag laser at 1064 nm and Pyrex melting point capillaries as sample containers. The thermal stabilities were determined using a DuPont Model 910 DSC, crimp-sealed aluminum pans as sample containers, and heating rates of 3 °C/min. The data were recorded and analyzed with a DuPont Model 2000 thermal analyst. Impact sensitivities were measured on an Olin Mathieson drop weight tester standardized with RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine, 30 kg·cm, 50 %). The N₂F⁺SbF₆ and N₂F⁺Sb₂F₁₁ starting materials were prepared from *cis*-N₂F₂ and SbF₅ in anhydrous HF solution as previously described.⁴⁻⁷ The HF (Matheson Co.) was dried by storage over BiF₅ (Ozark Mahoning).⁸ The NO and NO₂ (Matheson Co) were purified by fractional condensation prior to their use. The O₂ and Xe (Matheson Co) were used as received. The preparation of HN₃ has previously been described.¹ Preparation of N₅+SbF₆. A Teflon ampoule, equipped with a stainless steel valve and containing a Teflon-coated magnetic stirring bar, was passivated with ClF₃. It was attached to the metal vacuum line and treated several times with anhydrous HF until no color was observed upon freezing the HF at -196 °C. It was then loaded with N₂F⁺SbF₆ (4.97 mmol) in the glove box and attached to the metal vacuum line. The ampoule was evacuated and cooled to -196 °C. Anhydrous HF (~2 mL) was then condensed into the ampoule and its contents were allowed to warm to ambient temperature with occasional stirring. After all the N₂F⁺SbF₆ had dissolved, the ampoule was re-cooled to -196 °C and some additional neat HF was condensed onto the upper walls of the tube where the HN₃ was going to be frozen out. The cold ampoule was then connected to the glass line, and HN₃ (5.00 mmol) was added slowly at -196 °C. The reaction mixture was allowed to warm slowly behind a safety shield to room temperature and kept at this temperature for about 45 min. The volatile materials were removed by pumping for several hours at 20 °C, leaving behind a white powder (1.502 g, weight calcd for 4.97 mmol of N₅SbF₆ = 1.520 g) that was identified by its vibrational spectra as N₅SbF₆. This reaction was also carried out by first condensing HN_3 at -196 °C into a prepassivated and preweighed Teflon ampoule containing a known amount of HF. The resulting mixture was homogenized at ambient temperature. The ampoule was taken into the glove box, where a stoichiometric amount of $N_2F^+SbF_6^-$ was added at -196 °C. The cold ampoule was attached to the metal vacuum line and evacuated. Subsequent slow warming of the reaction mixture to room temperature for about 30 min, followed by removal of all volatile material resulted in the isolation of $N_5^+SbF_6^-$ in >99% yield. **Preparation of N**₅+Sb₂F₁₁. Freshly distilled SbF₅ (1.449 mmol) was added in the glove box to a prepassivated Teflon-FEP ampoule, and HF (1.9 mL liquid) was added on the metal vacuum line at -196 °C. The mixture was homogenized at room temperature and taken back into the glove box. The ampoule was cooled inside the glove box to -196 °C and opened, and N₅+SbF₆ (1.444 mmol) was added. The resulting mixture was allowed to warm to room temperature, and all volatile material was pumped off. The white solid residue (758 mg, weight calcd. for 1.444 mmol of N₅+Sb₂F₁₁ = 755 mg) was shown by vibrational spectroscopy to consist of N₅+Sb₂F₁₁. Reactions of $N_5^+SbF_6^-$ with NO, NO₂, O₂ or Xe. In a typical experiment, a .5 inch Teflon-FEP ampoule, that was closed by a Teflon valve, was loaded in the dry-box with $N_5^+SbF_6^-$ (.53 mmol). On the vacuum line, NO (4.2 mmol) was added at $-196\,^{\circ}$ C and the contents of the ampoule were allowed to warm slowly with intermittent cooling to room temperature. After keeping the ampoule for 2 hr at room temperature, it was cooled back to $-196\,^{\circ}$ C and the volatile gas (1.34 mmol of N_2) was measured and pumped off. The amount of unreacted NO was measured (3.6 mmol) and pumped off at room temperature, leaving behind .53 mmol of NO⁺SbF₆⁻ that was identified by vibrational spectroscopy. In a similar manner, N_5
⁺Sb F_6 ⁻ was found to react quantitatively with NO₂, but no reaction was observed with either Xe or O₂. Crystal structure determination of N₅+Sb₂F₁₁. About 1 mL of anhydrous SO₂ was condensed onto 0.200 g of N₅SbF₆ at -196 °C in a ½ inch o. d. sapphire tube (Tyco Corp.) closed by a stainless steel valve. The contents of the tube were warmed to -78 °C causing all of the N₅SbF₆ to dissolve and form a pale yellowish solution. Anhydrous SO₂ClF (~1.5 mL) was then slowly condensed onto this solution under vacuum. The solvents were then slowly removed under a static vacuum at -64 °C over a period of ~16 hours leaving behind plate-like colorless crystals. These crystals were extremely reactive to perfluoropolyether oil and showed an instantaneous evolution of nitrogen gas. The majority of the crystals were very soft and difficult to handle, but a few crystals appeared to exhibit a different habit and better mechanical strength. One of these crystals was immersed in halocarbon grease and mounted on the goniometer head using a precentered Nylon Cryoloop equipped with a magnetic base. The structure of the salt was determined using a Bruker diffractometer equipped with a CCD detector and a low temperature, LT3, device. The 3-circle platform with a fixed χ-axis was controlled by the SMART⁹ software package. The unit cell parameters were determined at -60 °C from three runs of data with 30 frames per run using a scan speed of 30-seconds per frame. A complete hemisphere of data was collected, using 1271 frames at 30 sec/frame, including 50 frames that were collected at the beginning and end of the data collection to monitor crystal decay. Data were integrated using the SAINT¹⁰ software package, and the raw data was corrected for absorption using the SADABS¹¹ program. The absence of h + k =odd and h0l reflections (l = odd) shows the presence of a C-centered lattice and a c-glide plane parallel and perpendicular to the b-axis, respectively, indicating Cc or C2/c as the likely space groups. The intensity statistics, E²-1 values, indicated a centrosymmetric space group thereby excluding Cc as a possible space group. The space group was thus unambiguously assigned as C2/c. The structure was solved by the Patterson method using the SHELXS-97¹² program and refined by the least squares method on F² using SHELXL-97.¹³ The initial Patterson map revealed the position of the two Sb atoms linked by a fluorine atom. The remaining atoms were located from subsequent difference electron density maps and finally refined anisotropically by the least-squares method on F² using the SHELXTL¹⁴ 5.1 software for Windows NT. The crystal did not show any significant decomposition during the data collection. The experimental and refinement parameters, and the atomic coordinates and thermal displacement parameters are listed in Tables 1 and 2, respectively. #### Results and Discussion $N_2F^+SbF_6^-$ of $H_2N_3^+SbF_6^{-15}$ Synthesis and Properties of N₅+SbF₆. The synthesis of N₅+SbF₆ was carried out in the same manner as previously reported for N₅+AsF₆ by reacting N₂F⁺SbF₆ with HN₃ in anhydrous HF solution at -78 °C, followed by removal of the volatile products at room temperature. $$N_2F^+SbF_6^-$$ + HN_3 $N_5^+SbF_6^-$ + HF The yield of $N_5^+SbF_6^-$ is essentially quantitative and the product purity is high. It is essential that the reaction system is completely anhydrous as water hydrolyzes the N_5^+ salt generating free SbF_5 which in combination with HF protonates HN_3 under formation HF HN_3 The N₅⁺SbF₆⁻ salt is a colorless hygroscopic solid that is stable at ambient temperature and, based on the DSC data, starts to decompose at 70 °C. It is surprisingly insensitive to impact. Even at the maximum setting of our apparatus (200 kg·cm), only partial thermal decomposition due to adiabatic heating of the sample but no explosions were observed. The salt is soluble in and compatible with HF, SO₂, and CHF₃. The oxidizing properties of N₅⁺SbF₆ were examined in the solid state and in HF solution by exposing it to 2 atmospheres of either oxygen or xenon gas between -78 °C and ambient temperature. No oxidations to O_2^+ and Xe_2^+ , respectively, were observed under these conditions, showing that the electron affinity of N₅⁺ is lower than the first ionization potential of xenon (12.08 eV), i. e., N₅⁺ is a weaker oxidizer than either PtF₆ that can oxidize O_2 to O_2^+ 16 or O_2^+ that can oxidize Xe to Xe_2^+ under similar conditions. 17,18 In spite of the first ionization potential of N₂ (15.51 eV) being 3.01 eV higher than that of O_2 (12.5 eV), the electron affinity of N_5^+ is lower than that of O_2^+ because in N_5^+ the positive charge is spread over a larger number of atoms, thereby decreasing its oxidizing power. However, it was found that N_5^+ can quantitatively oxidize either NO (1. IP = 9.5 eV) or NO₂ (1. IP = 11.0 eV) according to: NO + $$N_5^+SbF_6^-$$ NO $^+SbF_6^-$ + 2.5 N_2 and NO₂ + $N_5^+SbF_6^-$ NO₂ $^+SbF_6^-$ + 2.5 N_2 Therefore the electron affinity of N_5^+ must have a value between 11.0 and 12.08 eV, rendering it a very strong one-electron oxidizer. Although it is not quite as powerful as PtF_6 or O_2^+ salts, it offers the great advantage of not acting as a fluorinating or oxygenating agent, which can be a very important consideration when dealing with substrates that are easily fluorinated or oxygenated. Ongoing studies in our laboratory show that the potential hazards of handling neat HN_3 in the synthesis of N_5^+ can be avoided by either replacing HN_3 with the insensitive $(CH_3)_3SiN_3$ or generating the desired HN_3 from a weighed amount NaN_3 and excess HF in a separate ampoule and transferring all volatiles into the reaction vessel containing an HF solution of $N_2F^+SbF_6$. The reactions with $(CH_3)_3SiN_3$ are carried out in either HF or SO_2 solution and produce N_5^+ in high yield. When HF is used as the solvent, the first reaction step most certainly involves the formation of $(CH_3)_3SiF$ and HN_3 , i. e., HN_3 is generated in situ in the reactor. Synthesis and Properties of $N_5^+Sb_2F_{11}^-$. To preclude a potential side reaction of $Sb_2F_{11}^-$ with HF and HN₃ to give SbF_6^- and $H_2N_3^+SbF_6^-$, a sample of $N_5^+SbF_6^-$ was reacted with an equimolar amount of SbF_5 in HF solution at room temperature. $$N_5^+SbF_6^- + SbF_5 \longrightarrow N_5^+Sb_2F_{11}^-$$ The resulting $N_5^+Sb_2F_{11}^-$ salt is a colorless solid that is stable at room temperature and undergoes, according to its DSC data, thermal decomposition at 70 °C, *i. e.*, its thermal stability is comparable to that of $N_5^+SbF_6^-$ but, contrary to $N_5^+SbF_6^-$, it undergoes a reversible endotherm (melting) at about 30 °C. Consequently, the replacement of SbF_6^- by $Sb_2F_{11}^-$ did not result in increased thermal stability and does not appear to offer any significant advantages for studying the reaction chemistry of N_5^+ salts. Crystal Structure of $N_5^+Sb_2F_{11}^-$. The structure of $N_5^+Sb_2F_{11}^-$ is shown in Fig. 1-4 and the important bond lengths and angles are summarized in Table 3. The observed V-shaped geometry of the N_5^+ cation is in excellent agreement with the theoretical predictions for the free gaseous N_5^+ cation at the B3LYP level of theory with the calculated terminal and central N-N bond distances of 1.11 and 1.30 Å being close to the observed ones of 1.105(19) and 1.299(19) Å, respectively. Furthermore, the terminal N-N distance of 1.105(19) Å in N_5^+ is only slightly longer than that of 1.089(9) Å found for N_2F^+ in $N_2F^+Sb_2F_{11}^-$, and compares well with the N-N bond distances of 1.0976(2) Å in N_2^{-20} and 1.0927 Å found in HN_2^+ , indicating that these bonds approximate triple bonds. The central N-N bond length of 1.299(19) Å in N_5^+ is somewhat longer than those found for typical N-N double bonds (1.17 to 1.25 Å), but is significantly shorter than those found for typical N-N single bonds (1.43 to 1.75 Å). Also, the agreement between calculated [112.3 and 166.7°] and observed [111.2(11) and 167.2(15)°, respectively] bond angles is very good. The observed geometry supports the previously given rationale¹ that the exceptional stability of N_5^+ is largely due to resonance stabilization, resulting in relatively high bond orders for all the bonds. The bonding in N_5^+ can be described by the following three resonance structures: Although the relative contributions from (I) and the equivalent pair, (II) and (III), are unknown, the calculated charge distributions at the NBO(B3LYP/aug-cc-pVDZ) level²⁴ and the relative shielding of the N-nmr signals (the shielding increases from the terminal nitrogen to the β -nitrogen to the central nitrogen in accord with the calculated charge distributions)¹ strongly indicate that the terminal and the β -nitrogen atoms carry the positive charges and the central nitrogen a small negative one. A least-squares-plane analysis for N_5^+ shows that the cation is essentially planar. The N2 atom exhibits a maximum deviation of 0.11 Å from the average mean plane that shows a root mean square deviation of 0.0058 Å. The N_5^+ mean plane is almost perpendicular (78.1°) to the plane containing the F5-Sb1-F6-Sb2-F11 atoms. The latter is also almost perfectly planar and shows a root mean square deviation of 0.014 Å. The geometry of the Sb₂F₁₁ anion also deserves a special comment. This anion is known to possess little rigidity and can exist in either an eclipsed or staggered conformation and exhibit a wide range of Sb-F-Sb bridge angles, depending upon the counter ion present in the crystal lattice.²⁵ The eclipsed conformation is rare but has previously also been observed for BrF₄+Sb₂F₁₁. In the latter compound, the eclipsed structure results from a packing effect in which one equatorial fluorine ligand of each antimony atom of Sb₂F₁₁ bridges to a different BrF₄ cation.
Since the two BrF₄ cations and the Sb₂F₁₁ anion are coplanar, the bridging equatorial fluorine ligands around the antimonies become also coplanar resulting in the eclipsed configuration. The eclipsed conformation of the Sb₂F₁₁ anion found for N₅⁺Sb₂F₁₁ (Fig. 2) is also due to fluorine bridging but results from N₅⁺ acting as a spacer between the two equatorial SbF₄ units of Sb₂F₁₁ (Fig. 3). In accord with the resonance structures and the calculated charge distributions of N₅⁺ (see above), the positively charged β-nitrogen atoms interact with the negatively charged fluorine ligands forming bridges that are shorter than the sum of the van der Waals radii of 3.0 Å (Figures 2-4). Thus, N2 and N4 straddle the two eclipsed fluorine atoms, F2 and F8, but since the N₅⁺ plane is not perfectly perpendicular to the F_{ax} -Sb-F-Sb- F_{ax} plane, the N2-F8 = 2.723(15) Å and N4-F2 = 2.887(16) Å distances are somewhat shorter than those of N2-F2 = 3.032(16) Å and N4-F8 = 2.993(16) Å. In addition, N2 and N4 bridge to two fluorine atoms from other Sb₂F₁₁ anions with N4-F4B = 2.813(15) Å and N2-F10A = 2.768(15) Å. In contrast to $BrF_4^+Sb_2F_{11}^-$, which has an almost linear Sb-F-Sb bridge angle of 175° , 19 that of $155.0(4)^{\circ}$ in $N_5^+Sb_2F_{11}^-$ is much closer to those usually found for $Sb_2F_{11}^{-25}$ Vibrational Spectra of N_5^+ . The infrared and Raman spectra of solid $N_5^+SbF_6^-$ are shown in Figures 5 and 6, respectively. The experimentally observed frequencies of $N_5^+SbF_6^-$, $N_5^+Sb_2F_{11}^-$, and $N_5^+AsF_6^-$, together with their assignments, are listed in Table 4. A comparison of the observed and calculated frequencies and intensities of N_5^+ is given in Table 5. As can be seen, the previously missing remaining 4 fundamental vibrations and numerous combination bands of N_5^+ have been observed and are in excellent agreement with the theoretical predictions for point group C_{2v} . The splittings observed for $v_8(B_2)$ and $v_2(A_1)$ can be accounted for by Fermi resonance. The presence of $Sb_2F_{11}^-$ impurities in the SbF_6^- salt can be readily detected by Raman bands at 692, 598, and 231 cm⁻¹ and infrared bands at 708 and 497 cm⁻¹ that are characteristic for $Sb_2F_{11}^-$ and do not overlap with the SbF_6^- bands. ## Conclusion The synthesis and thorough characterization of $N_5^+SbF_6^-$ and $N_5^+Sb_2F_{11}^-$ demonstrate that the N_5^+ cation can form exceptionally stable salts with fluoroantimonate anions and that these salts are surprisingly insensitive to impact. The N_5^+ cation is a powerful one-electron oxidizer with an electron affinity between 11.0 and 12.08 eV while not giving rise to undesirable fluorination or oxygenation side-reactions. The ready availability of a stable polynitrogen cation in addition to the long known azide anion opens a venue to neutral polynitrogen compounds and may provide the basis for the first synthesis of nitrogen allotropes. ## Acknowledgements The authors thank the Defense Advanced Research Project Agency, the U. S. Air Force Office of Scientific Research, and the National Science Foundation for financial support and Drs. T. Schroer, S. Schneider, N. Maggiarosa, and M. Gerken from the University of Southern California for experimental support and stimulating discussions. ## Supporting Information Available Tables of structure determination summary, atomic coordinates, bond lengths and angles and anisotropic displacement parameters of $N_5Sb_2F_{11}$ in CIF format. This material is available free of charge via the internet at http://pubs.acs.org. #### References - (1) Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. Angew. Chem., Int. Ed. Engl. 1999, 38, 2004. - (2) See, for example, Chem. Eng, News, Jan. 25, 1999, pg.7; Nov. 29, 1999, pg.38;Aug. 14, 2000, pg. 41. - (3) Christe, K. O.; Wilson, W. W.; Schack, C. J.; Wilson, R. D. Inorg. Synth.1986, 24, 39. - (4) Ruff, J. K. Inorg. Chem. 1966, 5, 1971. - (5) Roesky, H. W.; Glemser, O.; Bormann, D. Chem. Ber. 1966, 99, 1589. - (6) Pankratov, V. A.; Savenkova, N. I. Zhur. Neorg. Khim. 1968, 13, 2610. - (7) Christe, K. O.; Wilson, R. D.; Sawodny, W. J. Mol. Structure 1971, 8, 245. Christe, K. O.; Wilson, R. D.; Wilson, W. W.; Bau, R.; Sukumar, S.; Dixon, D. A. J. Am. Chem. Soc. 1991, 113, 1991. - (8) Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978, 11, 71. - (9) SMART V 4.045 Software for the CCD Detector System, Bruker AXS, Madison,WI (1999). - (10) SAINT V 4.035 Software for the CCD Detector System, Bruker AXS, Madison, WI (1999). [†] Air Force Research Laboratory [‡] University of Southern California [§] University of California, Riverside - (11) SADABS, Program for absorption correction for area detectors, Version 2.01, Bruker AXS, Madison, WI (2000). - (12) Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1997. - (13) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997. - (14) SHELXTL 5.10 for Windows NT, Program library for Structure Solution and Molecular Graphics, Bruker AXS, Madison, WI (1997). - (15) Christe, K. O.; Wilson, W. W.; Dixon, D. A.; Khan, S. I.; Bau, R.; Metzenthin, T.;Lu, R. J. Am. Chem. Soc. 1993, 115, 1836. - (16) Bartlett, N.; Lohmann, D. H.; Proc. Chem. Soc. (London) 1962, 277; J. Chem. Soc. 1962, 5253. - (17) Stein, L.; Norris, J. R.; Downs, A. J.; Minihan, A. R. J. Chem. Soc. Chem. Commun. 1978, 502. - (18) Stein, L.; Henderson, W. W. J. Am. Chem. Soc. 1980, 102, 2856. - (19) Vij, A.; Vij, V.; Tham, F.; Christe, K. O. unpublished results. - (20) Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979. - (21) Owrutsky, J. C.; Gudeman, C. S.; Martner, C. C.; Tack, L. M.; Rosenbaum, N. H.; Saykally, R. J. J. Phys. Chem. 1986, 84, 605. - (22) Botschwina, P. Chem. Phys. Lett. 1984, 107, 535. - (23) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth, Heinemann: Oxford, 1998. - (24) Fau, S.; Bartlett, R. J. private communication. - (25) Aubke, F.; Willner, H. Paper C3, presented at the 16th International Symposium on Fluorine Chemistry, Durham, U.K., July 15-20, 2000. Table 1. Crystal data and structure refinement for $N_5^+\!Sb_2F_{11}^-$ | Table 1. Crystal data and structure for | inement for 145 Sb2F1 | 1 | |---|-----------------------------|------------------------| | Identification code | $N_5^+Sb_2F_{11}^-$ | V., | | Empirical formula | F11 N5 Sb2 | | | Formula weight | 522.55 | | | Temperature | 213(2) K | | | Wavelength | 0.71073 Å | | | Crystal system | Monoclinic | | | Space group | C2/c | • | | Unit cell dimensions | a = 10.913(8) Å | L → 1 = 90°. | | | b = 12.654(8) Å | /3 Æ 104.715(18)°. | | | c = 16.675(11) Å | و 90° = 90°. | | Volume | 2227(3) Å ³ | | | Z | 8 | | | Density (calculated) | 3.117 Mg/m ³ | | | Absorption coefficient | 4.995 mm ⁻¹ | | | F(000) | 1888 | | | Crystal size | 0.26 x 0.10 x 0.05 mi | m^3 | | Theta range for data collection | 2.51 to 25.35°. | | | Index ranges | -12<=h<=13, -15<=k | <=15, -20<=l<=17 | | Reflections collected | 9125 | | | Independent reflections | 2022 [R(int) = 0.0629] | 9] | | Absorption correction | Sadabs | | | Max. and min. transmission | 0.7883 and 0.3567 | | | Refinement method | Full-matrix least-squa | ares on F ² | | Data / restraints / parameters | 2022 / 0 / 164 | | | Goodness-of-fit on F ² | 1.122 | | | Final R indices [I>2sigma(I)] | R1 = 0.0678, $wR2 = 0.0678$ | 0.1913 | | R indices (all data) | R1 = 0.0785, $wR2 = 0$ | 0.2019 | | Extinction coefficient | 0.00026(18) | | | Largest diff. peak and hole | 4.329 and -2.102 e.Å | -3 | | | | | Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å 2 x 10^3) for $N_5^+Sb_2F_{11}^-$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. | | X | у | Z | U(eq) | | |-------|----------|----------|---------|-------|--| | Sb(1) | 2327(1) | 5268(1) | 5963(1) | 32(1) | | | Sb(2) | 1229(1) | 2343(1) | 6199(1) | 28(1) | | | F(1) | 930(11) | 5546(9) | 6373(7) | 65(3) | | | F(2) | 3187(10) | 4839(8) | 7017(5) | 59(3) | | | F(3) | 3652(9) | 4765(7) | 5561(6) | 48(2) | | | F(4) | 1368(9) | 5453(7) | 4889(5) | 51(2) | | | F(5) | 2906(11) | 6638(7) | 6101(6) | 64(3) | | | F(6) | 1691(8) | 3755(6) | 5813(5) | 43(2) | | | F(7) | -17(9) | 3062(8) | 6548(6) | 53(2) | | | F(8) | 2340(9) | 2672(7) | 7217(5) | 50(2) | | | F(9) | 2592(10) | 1837(9) | 5844(6) | 63(3) | | | F(10) | 190(10) | 2218(6) | 5142(5) | 49(2) | | | F(11) | 854(10) | 1003(6) | 6539(6) | 59(3) | | | N(1) | 4750(14) | 3132(16) | 8389(9) | 62(4) | | | N(2) | 3965(12) | 3518(11) | 8581(7) | 40(3) | | | N(3) | 3138(14) | 3881(10) | 8954(8) | 51(4) | | | N(4) | 2229(13) | 4376(10) | 8441(7) | 40(3) | | | N(5) | 1369(14) | 4828(13) | 8136(8) | 52(4) | | Table 3. Bond lengths and angles for $N_5^+Sb_2F_{11}^-$ ## Bond lengths (Å) | Sb(1)-F(5) | 1.839(8) | Sb(2)-F(9) | 1.849(10) | |------------------|-----------|-------------------|-----------| | Sb(1)-F(4) | 1.845(8) | Sb(2)-F(8) | 1.866(8) | | Sb(1)-F(2) | 1.851(9) | Sb(2)-F(11) | 1.866(8) | | Sb(1)-F(3) | 1.854(9) | Sb(2)-F(6) | 2.007(7) | | Sb(1)-F(1) | 1.856(10) | N(1)-N(2) | 1.102(19) | | Sb(1)-F(6) | 2.031(7) | N(2)-N(3) | 1.303(19) | | Sb(2)-F(10) | 1.844(7) | N(3)-N(4) | 1.295(19) | | Sb(2)-F(7) | 1.849(9) | N(4)-N(5) | 1.107(19) | | Bond Angles (°) | | | | | F(5)-Sb(1)-F(4) | 95.4(4) | F(9)-Sb(2)-F(8) | 88.8(5) | | F(5)-Sb(1)-F(2) | 94.8(4) | F(10)-Sb(2)-F(11) | 94.8(4) | | F(4)-Sb(1)-F(2) | 169.9(4) | F(7)-Sb(2)-F(11) | 96.7(5) | | F(5)-Sb(1)-F(3) | 95.4(5) | F(9)-Sb(2)-F(11) | 92.2(5) | | F(4)-Sb(1)-F(3) | 89.7(4) | F(8)-Sb(2)-F(11) | 93.9(4) | | F(2)-Sb(1)-F(3) | 89.3(5) | F(10)-Sb(2)-F(6) | 85.0(3) | | F(5)-Sb(1)-F(1) | 93.6(5) | F(7)-Sb(2)-F(6) | 85.9(4) | |
F(4)-Sb(1)-F(1) | 91.0(5) | F(9)-Sb(2)-F(6) | 85.3(5) | | F(2)-Sb(1)-F(1) | 88.4(5) | F(8)-Sb(2)-F(6) | 86.3(4) | | F(3)-Sb(1)-F(1) | 170.8(4) | F(11)-Sb(2)-F(6) | 177.5(4) | | F(5)-Sb(1)-F(6) | 179.9(5) | Sb(2)-F(6)-Sb(1) | 155.0(4) | | F(4)-Sb(1)-F(6) | 84.7(4) | N(1)-N(2)-N(3) | 168.1(15) | | F(2)-Sb(1)-F(6) | 85.1(4) | N(4)-N(3)-N(2) | 111.2(11) | | F(3)-Sb(1)-F(6) | 84.5(4) | N(5)-N(4)-N(3) | 166.3(14) | | F(1)-Sb(1)-F(6) | 86.4(4) | | | | F(10)-Sb(2)-F(7) | 91.2(5) | | | | F(10)-Sb(2)-F(9) | 90.8(5) | | | | F(7)-Sb(2)-F(9) | 170.7(5) | | | | F(10)-Sb(2)-F(8) | 171.3(4) | | | | F(7)-Sb(2)-F(8) | 87.9(4) | | | | | | | | Table 4. Observed Infrared and Raman Spectra of $N_5^+SbF_6$, $N_5^+Sb_2F_{11}^-$ and $N_5^+AsF_6^-$ and Their Assignments -----assgnts (point group)-----assgnts (point group)--------- $N_5^+Sb_2F_{11}^-$ ---- $N_5^+AsF_6^-$ --- $MF_6(O_h)$ Sb_2F_{11} $N_5^+(C_{2v})$ IR RA IR RA IR RA $(v_1 + v_3 + v_9)(B_2) =$ 3357 3358 vw $(v_1 + v_8)(B_2) = 3323$ 3334 vw 3069 w $(v_2 + v_7)(B_2) = 3077$ 3079 w $(v_1 + v_9)(B_2) = 2682$ 2671 vw 2681 vw 2261 (9.0) 2270 2271 (4.4) $(v_1)(A_1)$ 2270 m 2268 2260 m (9.4)2202 (1.9) 2210 s $(v_7)(B_2)$ 2211 (0.8) 2205 2203 s 2205 s (2.0) $(v_3 + 3v_9)(B_2) = 1914$ 1921 1919 vw vw $(v_8 + 2v_9)(B_2) = 1883$ 1891 1883 vw vw Comb. Comb. 1366 w 1240 bands bands 1288 vw[٧W $(v_3 + v_9)(B_2) = 1086^a$ 1088 s 1092 1089 s ms $v_8(B_2)$ 1064 s 1064 s $(v_5 + v_6)(B_2) = 903$ 902 892 vvw vvw $v_2(A_1)$ 866 (0.6) 872 w 871 (0.7) 871 w 872 (0.6) 867 w $(2v_9)(A_1) = 828^b$ 824(0+)835 vw 837 (0+) 824 vw 692 (5.5) 725 vSbF 654 (10) 650 vs,br 598 (1.4) 669/672 $v_3(A_1)$ 680 sh 664 (~1) 672 (1) (1.8) $v_3(F_{1u})$ 655 vs 704 vs $\nu_l(A_{lg})$ 686 (10) 652 (10) 596 mw vSbF 537 mw $v_2(E_g)$ 575 w 579 (1.6) 582 w 571 (0.8) vSb-F-Sb 497 s 478 (0+) 470 (0+) $v_5(A_2)$ 447 w 449 w 420 sh $v_6(B_1)$ 417 ms 425 ms 417 (0+) $v_0(B_2)$ 412 mw 416 (0+) 409 sh 295 (2.1) 283 sh δSb-F 272 sh 231 (2.0) $v_4(F_{1u})$ 394 vs 284 vs $v_5(F_{2g})$ 372 (3.4) 282 (2.8) 204 (5.0) 200 (3.6) 209 (4.4) $\nu_4(A_1)$ 135 sh 125 (5.5) lattice vibrations 107 (5) 97 (5.0) a) In Fermi resonance with $v_8(B_2)$. b) In Fermi resonance with $v_2(A_1)$ Table 5. Comparison of Observed and Unscaled Calculated CCSD(T)/6311+G(2d) Vibrational Frequencies (cm $^{\text{-}1}$) and Intensities (km mol $^{\text{-}1}$ and $\text{Å}^{\text{-}4}$ amu $^{\text{-}1}$) for $N_5^{\text{+}}$ | | approx mode description in point group C _{2v} | calcd fro | eq (abs IR | R, Ra int) | obsd freq (re | el IR, RA | (int) | |----------------|--|-----------|------------|------------|---------------|-----------|------------------| | A_1 | v_1 in-phase terminal stretches | 2229 | (13) | [215] | 2260-2271 | m | [10.0] | | | v_2 sym central stretch | 818 | (0.5) | [5] | 866-872 | w | [0.6] | | | v ₃ central bending | 644 | (2) | [1] | 664-672 | obscd | [1] ^a | | | v ₄ in-phase terminal bends | 181 | (0.3) | [6] | 200-209 | _b | [4] | | A ₂ | v_5 out-of-phase, out-of-plane bend | 475 | (0) | [1] | 470-478 | - | [0+] | | B_1 | ν ₆ in-phase, out-of-plane bend | 405 | (6) | [0] | 417-425 | ms | [0] | | B_2 | ν ₇ out-of-phase term stretches | 2175 | (105) | [42] | 2203-2211 | S | [1.9] | | | v ₈ asym central stretch | 1032 | (138) | [2] | 1055-1064 | s . | [n. obsd] | | | ν ₉ out-of-phase term bends | 399 | (1) | [0.5] | 412-417 | mw | [+0] | ^aObscured in infrared and interference in Ra by anion bands. ^bOutside of frequency range of our spectrometer. ## Figure Captions - Figure 1. An ORTEP diagram of N_5 *Sb₂F₁₁ showing the thermal ellipsoids at the 30% probability level. - Figure 2. An ORTEP diagram showing the side view of the eclipsed Sb_2F_{11} anion. The thermal ellipsoids are drawn at the 30% probability level. - Figure 3. Space filling representation of $N_5^+Sb_2F_{11}^-$ showing the close packing of the N_5^+ cation within the $Sb_2F_{11}^-$ cavity. - Figure 4. A figure showing close range N···F contacts within the crystal lattice of N_5 ⁺Sb₂F₁₁⁻. - Figure 5. Infrared spectrum of solid $N_5^+SbF_6^-$ recorded as an AgBr pellet at room temperature. The band at 498 cm⁻¹, marked by an asterisk, is due to a small amount of $Sb_2F_{11}^-$. - Figure 6. Raman spectrum of solid $N_5^+SbF_6^-$ recorded at room temperature. Figure 1 Figure 2 Figure 3 Figure 4 ## SUPPLEMENTARY MATERIAL Polynitrogen Chemistry. Synthesis, Characterization, and Crystal Structure of Surprisingly Stable Fluoroantimonate Salts of ${\rm N_5}^+$ Ashwani Vij, *William W. Wilson, *Vandana Vij, *Fook S. Tham, *Jeffrey A. Sheehy, *and Karl O. Christe, *** Propulsion Sciences and Advanced Concepts Division, Air Force Research Laboratory (AFRL/PRS), Edwards AFB, California 93524, Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089, and Department of Chemistry, University of California, Riverside, CA 92521 #### **Abstract** The new N_5^+ salt, N_5^+ SbF₆, was prepared from N_2F^+ SbF₆ and HN₃ in anhydrous HF solution. The white solid is surprisingly stable, decomposing only at 70 °C, and is relatively insensitive to impact. Its vibrational spectrum exhibits all nine fundamentals with frequencies that are in excellent agreement with the theoretical calculations for a five-atomic V-shaped ion of C_{2v} symmetry. The N_5^+ Sb₂F₁₁ salt was also prepared and its crystal structure was determined. The geometry previously predicted for free gaseous N_5^+ from theoretical calculations was confirmed within experimental error. The Sb₂F₁₁ anions exhibit an unusual geometry with eclipsed SbF₄ groups due to inter-ionic bridging with the N_5^+ cations. The N_5^+ cation is a powerful one-electron oxidizer. Its electron affinity falls between 11.0 and 12.08 eV because it readily oxidizes NO to NO⁺ and NO₂ to NO₂⁺ but fails to oxidize Xe or O₂. Courted data and structure refinement for N5SB2F11. Largest diff. peak and hole | Table 1. Crystal data and structure refinement | ent for N5SB2F11. | | |---|--|-------------------------------| | Identification code | N ₅ Sb ₂ F ₁₁ | | | Empirical formula | F11 N5 Sb2 | | | Formula weight | 522.55 | | | Temperature | 213(2) K | | | Wavelength | 0.71073 Å | • | | Crystal system | Monoclinic | | | Space group | C2/c | α= 90°. | | Unit cell dimensions | a = 10.913(8) Å | $\beta = 104.72(2)^{\circ}$. | | | b = 12.654(8) Å | $y = 90^{\circ}$. | | | c = 16.675(11) Å | $\gamma = 90^{\circ}$. | | Volume | 2227(3) Å ³ | • | | Z | 8 | | | Density (calculated) | 3.117 Mg/m^3 | | | Absorption coefficient | 4.995 mm ⁻¹ | | | F(000) | 1888 | | | Crystal size | $0.26 \times 0.10 \times 0.05 \text{ mm}^3$ | · | | Theta range for data collection | 2.51 to 25.35°. | | | Index ranges | -12<=h<=13, -15<=k<= | 15, -20<=1<=17 | | Reflections collected | 9125 | | | Independent reflections | 2022 [R(int) = 0.0629] | | | Completeness to theta = 25.35° | 99.6 % | | | • | SADABS | | | Absorption correction Max. and min. transmission | 0.7883 and 0.3567 | | | | Full-matrix least-square | es on F ² | | Refinement method | 2022 / 0 / 164 | | | Data / restraints / parameters | 1.122 | | | Goodness-of-fit on F ² | R1 = 0.0678, $wR2 = 0$. | 1913 | | Final R indices [I>2sigma(I)] | R1 = 0.0785, $wR2 = 0$ | | | R indices (all data) | 0.00026(18) | | | Extinction coefficient | 4.329 and -2.102 e.Å-3 | | | Largest diff. peak and hole | | | Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for N5SB2F11. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. | | · x | у | z | U(eq) | |-------|----------|----------|---------|-------| | Sb(1) | 2327(1) | 5268(1) | 5963(1) | 32(1) | | Sb(2) | 1229(1) | 2343(1) | 6199(1) | 28(1) | | F(1) | 930(11) | 5546(9) | 6373(7) | 65(3) | | F(2) | 3187(10) | 4839(8) | 7017(5) | 59(3) | | F(3) | 3652(9) | 4765(7) | 5561(6) | 48(2) | | F(4) | 1368(9) | 5453(7) | 4889(5) | 51(2) | | F(5) | 2906(11) | 6638(7) | 6101(6) | 64(3) | | F(6) | 1691(8) | 3755(6) | 5813(5) | 43(2) | | F(7) | -17(9) | 3062(8) | 6548(6) | 53(2) | | F(8) | 2340(9) | 2672(7) | 7217(5) | 50(2) | | F(9) | 2592(10) | 1837(9) | 5844(6) | 63(3) | | F(10) | 190(10) | 2218(6) | 5142(5) | 49(2) | | F(11) | 854(10) | 1003(6) | 6539(6) | 59(3) | | N(1) | 4750(14) | 3132(16) | 8389(9) | 62(4) | | N(2) | 3965(12) | 3518(11) | 8581(7) | 40(3) | | N(3) | 3138(14) | 3881(10) | 8954(8) | 51(4) | | N(4) | 2229(13) | 4376(10) | 8441(7) | 40(3) | | N(5) | 1369(14) | 4828(13) | 8136(8) | 52(4) | Table 3. Bond lengths [Å] and angles [°] for N5SB2F11. | Sb(1)-F(5) | 1.839(8) | |------------------|-----------| | Sb(1)-F(4) | 1.845(8) | | Sb(1)-F(2) | 1.851(9) | | Sb(1)-F(3) | 1.854(9) | | Sb(1)-F(1) | 1.856(10) | | Sb(1)-F(6) | 2.031(7) | | Sb(2)-F(10) | 1.844(7) | | Sb(2)-F(7) | 1.849(9) | | Sb(2)-F(9) | 1.849(10) | | Sb(2)-F(8) | 1.866(8) | | Sb(2)-F(11) | 1.866(8) | | Sb(2)-F(6) | 2.007(7) | | N(1)-N(2) | 1.102(19) | | N(2)-N(3) | 1.303(19) | | N(3)-N(4) | 1.295(19) | | N(4)-N(5) | 1.107(19) | | F(5)-Sb(1)-F(4) | 95.4(4) | | F(5)-Sb(1)-F(2) | 94.8(4) | | F(4)-Sb(1)-F(2) | 169.9(4) | | F(5)-Sb(1)-F(3) | 95.4(5) | | F(4)-Sb(1)-F(3) | 89.7(4) | | F(2)-Sb(1)-F(3) | 89.3(5) | | F(5)-Sb(1)-F(1) | 93.6(5) | | F(4)-Sb(1)-F(1) | 91.0(5) | | F(2)-Sb(1)-F(1) | 88.4(5) | | F(3)-Sb(1)-F(1) | 170.8(4) | | F(5)-Sb(1)-F(6) | 179.9(5) | | F(4)-Sb(1)-F(6) | 84.7(4) | | F(2)-Sb(1)-F(6) | 85.1(4) | | F(3)-Sb(1)-F(6) | 84.5(4) | | F(1)-Sb(1)-F(6) | 86.4(4) | | F(10)-Sb(2)-F(7) | 91.2(5) | | F(10)-Sb(2)-F(9) | 90.8(5) | | * . | | | F(7)-Sb(2)-F(9) | 170.7(5) | |-------------------|-----------| | F(10)-Sb(2)-F(8) | 171.3(4) | | F(7)-Sb(2)-F(8) | 87.9(4) | | F(9)-Sb(2)-F(8) | 88.8(5) | | F(10)-Sb(2)-F(11) | 94.8(4) | | F(7)-Sb(2)-F(11) | 96.7(5) | | F(9)-Sb(2)-F(11) | 92.2(5) | |
F(8)-Sb(2)-F(11) | 93.9(4) | | F(10)-Sb(2)-F(6) | 85.0(3) | | F(7)-Sb(2)-F(6) | 85.9(4) | | F(9)-Sb(2)-F(6) | 85.3(5) | | F(8)-Sb(2)-F(6) | 86.3(4) | | F(11)-Sb(2)-F(6) | 177.5(4) | | Sb(2)-F(6)-Sb(1) | 155.0(4) | | N(1)-N(2)-N(3) | 168.1(15) | | N(4)-N(3)-N(2) | 111.2(11) | | N(5)-N(4)-N(3) | 166.3(14) | | • • • | | Symmetry transformations used to generate equivalent atoms. Table 4. Anisotropic displacement parameters (Å 2 x 10 3) for N5SB2F11. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h^2 a^{*2} U 11 + ... + 2 h k a^* b* U 12] | | Ω_{11} | U_{55} | Ω_{33} | U^{23} | Ω_{13} | U_{15} | |-------|---------------|----------|---------------|----------|---------------|----------| | Sb(1) | 46(1) | 20(1) | 33(1) | -4(1) | 16(1) | -10(1) | | Sb(2) | 37(1) | 15(1) | 29(1) | 0(1) | 2(1) | -3(1) | | F(1) | 80(7) | 58(6) | 74(7) | -15(5) | 48(6) | 1(5) | | F(2) | 73(6) | 69(7) | 27(4) | 2(4) | 0(4) | -37(5) | | F(3) | 48(5) | 50(6) | 49(5) | -4(4) | 19(4) | -5(4) | | F(4) | 64(6) | 43(5) | 41(5) | 14(4) | 5(4) | -8(4) | | F(5) | 101(8) | 16(4) | 73(7) | -10(4) | 21(6) | -14(5) | | F(6) | 64(5) | 29(4) | 35(4) | 1(3) | 10(4) | -21(4) | | F(7) | 63(6) | 48(6) | 54(5) | 0(4) | 26(4) | 10(5) | | F(8) | 63(6) | 45(5) | 30(4) | -1(4) | -12(4) | -6(4) | | F(9) | 52(6) | 69(7) | 70(6) | -14(5) | 19(5) | 15(5) | | F(10) | 78(6) | 29(4) | 25(4) | -2(3) | -16(4) | -7(4) | | F(11) | 80(7) | 24(5) | 61(6) | 13(4) | -2(5) | -7(4) | | N(1) | 43(8) | 103(14) | 40(7) | -3(8) | 8(6) | 8(8) | | N(2) | 45(7) | 46(7) | 23(5) | 0(5) | -1(5) | -6(6) | | N(3) | 77(10) | 40(8) | 39(7) | 0(6) | 19(7) | 22(7) | | N(4) | 54(8) | 37(7) | 33(6) | -2(5) | 18(6) | -12(6) | | N(5) | 51(8) | 68(10) | 41(7) | -1(7) | 18(6) | -2(7) | Table 5. Torsion angles [°] for N5SB2F11. | F(10)-Sb(2)-F(6)-Sb(1) | 156.0(13) | |------------------------|------------| | F(7)-Sb(2)-F(6)-Sb(1) | 64.4(13) | | F(9)-Sb(2)-F(6)-Sb(1) | -112.8(13) | | F(8)-Sb(2)-F(6)-Sb(1) | -23.7(12) | | F(11)-Sb(2)-F(6)-Sb(1) | -118(7) | | F(5)-Sb(1)-F(6)-Sb(2) | 47(100) | | F(4)-Sb(1)-F(6)-Sb(2) | -154.6(13) | | F(2)-Sb(1)-F(6)-Sb(2) | 25.4(12) | | F(3)-Sb(1)-F(6)-Sb(2) | 115.2(13) | | F(1)-Sb(1)-F(6)-Sb(2) | -63.3(13) | | N(1)-N(2)-N(3)-N(4) | -173(8) | | N(2)-N(3)-N(4)-N(5) | -179(100) | Symmetry transformations used to generate equivalent atoms. Table 6 - Contact Distances(Angstrom) for N5SB2F11 - Sb1 .N3_a 3.830(14) F8 .F2 2.940(14) - Sb1 .F11_b 3.837(11) F8 .N1 2.909(18) - Sb2 .F5_c 3.697(12) F8 .N2 2.723(15) - F1 .N5 2.997(18) F8 .N3 3.195(15) - F1 .N5_d 2.97(2) F8 .N4 2.993(15) - F1 .F4_e 3.104(15) F9 .N5_j 3.108(19) - F2 .F8 2.940(14) F9 .F3_h 3.135(14) - F2 .N2 3.032(15) F10 .N1_k 2.874(17) - F2 .N4 2.887(16) F10 .N2_k 2.768(15) - F2 .N5 3.049(18) F10 .N3_k 2.936(17) - F2 .F11_f 2.790(13) F11 .Sb1_c 3.837(11) - F3 .N1_g 2.97(2) F11 .F3_c 2.983(14) - F3 .N2_g 3.068(17) F11 .F2_1 2.790(13) - F3 .N3_a 3.109(16) F11 .N2_j 3.160(16) - F3 .F11_b 2.983(14) F11 .N3_j 3.091(16) - F3 .F9_h 3.135(14) F11 .N4_j 2.929(17) - F4 .F1_e 3.104(15) N1 .F8 2.909(18) - F4 .F7_e 3.107(13) N1 .N4 3.19(2) - F4 .N3_a 2.899(18) N1 .F3_m 2.97(2) - F4 .N4_a 2.813(15) N1 .N1_g 3.15(2) - F4 .N5_a 2.945(16) N1 .F10_n 2.874(17). - F5 .Sb2_b 3.697(12) N2 .F2 3.032(15) - F5 .F7_b 2.843(15) N2 .F8 2.723(15) - F5 .N3_i 3.051(16) N2 .N5 3.20(2) - F7 .N4_d 2.935(17) N2 .F3_m 3.068(17) - F7 .N5_d 2.801(19) N2 .F11_f 3.160(16) - F7 .F4_e 3.107(13) N2 .F10_n 2.768(14) ``` 3.195(15) 2.843(15) N3 .F8 .F5_c ∠ F7 2.813(15) 3.830(14) N4 .F4_o .Sb1_o N3 .F11_f 2.929(17) N4 3.109(16) N3 .F3_o .F1 2.997(18) N5 2.899(18) N3 .F4_o 3.049(18) .F2 N5 3.051(16) .F5_1 N3 3.20(2) N5 .N2 3.091(16) .F11_f N3 2.97(2) .F10_n 2.936(17) N5 .F1_p N3 2.801(19) 2.887(16) N5 .F7_p .F2 N4 .N5_d 3.19(2) 2.993(15) N5 N4 .F8 2.945(16) 3.19(2) N5 .F4_o N4 .N1 3.108(19) .F9 f 2.935(17) N5 .F7_p ``` ## Translation of Symmetry Code to Equiv.Pos ``` a = [4564.00] = x,1-y,-1/2+z b = [5555.00] = 1/2 + x, 1/2 + y, z c = [5445.00] = -1/2+x, -1/2+y, z d = [2556.00] = -x,y,3/2-z e = [3566.00] = -x,1-y,1-z f = [6556.00] = 1/2-x, 1/2+y, 3/2-z g = [2656.00] = 1-x,y,3/2-z h = [7556.00] = 1/2-x, 1/2-y, 1-z i = [6556.00] = 1/2-x,1/2+y,3/2-z j = [6546.00] = 1/2-x,-1/2+y,3/2-z k = [8454.00] = -1/2+x, 1/2-y, -1/2+z 1 = [6546.00] = 1/2-x, -1/2+y, 3/2-z m = [2656.00] = 1-x,y,3/2-z n = [8555.00] = 1/2+x,1/2-y,1/2+z o = [4565.00] = x,1-y,1/2+z p = [2556.00] = -x, y, 3/2-z ``` Table | - | | | | | _ | | | | | | | |-----------|---------------|---------------|--------|------|------------|-----|------|------|------|-----|------------|------------|-------------|------|---------|------|------|------------|-------|--------|----------|------------|-------------|------------|----------|-----------------|------------|--------------|------------|-----|---------|--------------|--------|----------|-----|------|------------|------|-------------|---------------|-----------|--------| | s | S | 6 | 3 | _ | | 7 , | | σ. | 4 | ۲. | 4 | ж
- с | ٠, ٠ | T 0 | ۰ د | J < | r (| V 5 | Jr (| , م | 7 1 | ഹം | 5 0 | ۍ د | 1 0 | o L | . , | | . ~ | . 2 | v | , m | ٠, | , , | | ٠ | , r | ۰ - | , - | 7 _ | - a | o | | c 10 | 3 | 3 1 | 0 70 | | 10Fc | 115 | 153 | 630 | 40 | 100 | 86. | 1 | 25 | 98 | 54 | 49 | 4.
2. c | 7 0 | 0 0 | , , | 200 | 7 0 | 132 | 7 C T | 9 6 | , כ | 4 | - כ | 2 6 | , < | ÷ ~ | 2 | 76 | 11 | 88 | 25 | 284 | 17 | 320 | 00 | 248 | 5 | 226 | 10.7 | 47 | 200 | 80 | | 10F0 | 110 | 542 | 669 | 466 | .013 | 906 | 123 | 90 | 6/8 | 617 | 548 | 212 | ָ
ק | 411 | 9 6 | 707 | 000 | 470. | 0 0 | 907 | 0 1 | 273 | 1 0 | 247 | - 000 | 988 | 0 | 843 | 0 | 005 | 289 | 1756 | 185 | 052 | 883 | 182 | 77 | 196 | 2 | 461 | 230 | 20 | | 7 7 | 2 1 | 7 | 7 | 7 | 7 7 | 2 (| 7 (| 2 (| 7 | 2 | ~ (| 7 (| ٦ , | 4 0 | 1 0 | 4 C | 1 0 | 4 6 | 4 (| , c | 1 (| 7 c | 1 0 | 7 C | 10 | ۷ ۷ | . ~ | m | m | 3 | ٣ | 3 | m | (1) | ٠, | , ~ | | י נ |) (L | י ר | | າຕ | | × | 11 | 11 | 11 | 77 | 7 ; | - ; | Ţ. | 12 | 7 7 | 7.7 | 7.7 | 77 | 1 5 | 1 0 | 1 . | 3 . | , , | 3 5 | , , | 17 | 7 - | 7 - | , , | 7 - | ٦, | 12 | 15 | - | Н | 7 | Н | - | ~ | ٦ | - | | ۱ | 4 | ٠, | ٠,- | ۱۸ | 1 7 | | 4 | -5 | | -1 | ~ (| יי | Ωį | - (| ap (| ۰ و | T (| 7 . | c د | 1 < | r (c | ים
ו | ן מ | 1 | | 4 0 | ט ע | , | 1 1 | 10 | o ر | 1 4 | - 1 | - | -13 | -11 | 6- | 1 | -5 | | -1 | - | ~ ۱ | ı ıc | , , | - σ | ١, ٢ | -12 | -10 | | 10s | 56 | 25 | 58 | 56 | 77 | 16 | 010 | 7.7 | ٦ , | , d | 4 g | 77 | F 7 | 25 |] [| 15 | 9 4 | 22 | 1 0 | 30 | י
ע נ | | 1, | 25 | 5.0 | 14 | 32 | 24 | 15 | 47 | 45 | 43 | 54 | 09 | 18 | 20 | 42 | 10 | 17 | 20 | 36 | 34 | | ည | 482 | 026 | 116 | 562 | 1/1 | 9 0 | 0 0 | 248 | 130 | 797 | 910 | 707 | י כ
ני כ | 118 | 200 | 256 | 442 | 440 | 700 | 280 | . 000 | 900 | 712 | 2275 | 270 | 513 | 984 | 062 | 441 | 242 | 252 | 410 | 654 | 37 | 222 | 498 | 970 | 399 | 735 | 768 | 164 | 320 | | o 10 | 10F0 | 243 | 142 | 461 | | 8 6 | 70, | 4 4 | ດິ | ć | ח ל | 0 1 | 7 2 | , | 23 | 8 | 122 | 77 | 4 | 1 4 | | 2 | ó | Ö | 3175 | 346 | 9 | 217 | 212 | 14] | 15 | 7 | 4(| 6 | v | 132 | 9 | 426 | 4 | 183 | 16 | 246 | 2, | | 7 | 3 | 3 | 2 0 | | 9 0 | , , | 7 6 | 2 6 | , , | , c | , , | , 0 | 1 6 | . 6 | 2 | . 4 | 2 | 1 2 | | | | 1 0 | | 10 | 5 2 | 2 | 5 2 | 5 2 | 5 | 5 2 | 5.2 | 5 2 | 5 | 5 2 | 5 2 | 5 2 | 5 | 2 | 5 | .0 | 5 | 5 2 | | ч | ώ
 | ņ. | | ٠. | ი <u>.</u> | ט ר | - 0 | ν - | | , < | ٥ د | ې د | , 4 | ٠, | 0 | 2 | 4 | . 9 | α | 0 | | . 6 | | - rċ | ٠, | - | | د | r, | 7 | σ. | Ξ. | _
O | -
80 | و | 4 | .5 | 0 | 7 | 4 | 9 | 8 | | | | • | 1 | | | | | Ť | 7 (| 7 | | | | | | | | | | | ī | ٠, | , | - 5 | , | , | | | | | | | ī | ' | • | , | 1 | | | | | | | 10s | ~ | ~ | 31 | 7,7 | | 200 | 2 6 | 7 7 | , 5 | 3 6 | 7 6 | 30 | 34 | 24 | 40 | 18 | 29 | 24 | 40 | 31 | 32 | 42 | 19 | 19 | 21 | 22 | 29 | 20 | 26 | 122 | 42 | 22 | 22 | 70 | 74 | 20 | 21 | 57 | 27 | 30 | 92 | 36 | | 10Fc | 143 | 1682 | OFo : | 0 | 1670 | 1 10 | ٦, | | , c | , , | 1.6 | 4 | - | 7 - | , , | , | , <u>,</u> | ; ~ | - | 1.2 | 1 19 | 1 11 | | - | 7 | , , , | 7 | 1 10 | 1 11 | 1 16 | 1 16 | 7 | 7 | 1. 1. | 1 21 | 7 | | 1 16 | 1 1 | 7 | ., | 1 10 | 1 11 | 1 6 | 1 11 | 1 12 | 7 | 1 16 | | × | 80 4 | э (| ט פ | ησ | ٠ ٥ | ٠ ٥ | ٠ ٥ | 0 | , o | ٠ ٥ | , 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 11 | 11 | 11 | 11 | 11 | 11 | 1.1 | 11 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 1.4 | 14 | | ح | 10 | ן
טינ | - 4 | י ר | , - | | . ~ | י ע | , , | - σ | ν α
1 | 9 | 4-4 | -2 | 0 | 7 | 4 | 9 | 8 | -7 | .5 | 6- | 7 | 7 | m | 2 | 7 | 9- | -4 | -2 | 0 | 2 | 4 | 9 | -5 | ű | 7 | 7 | m | 2 | -4 | -2 | | 70 | ω. | , | ~ r | - ~ | | . ~ | c | | . 57 | | | | ~ | _ | 0 | Ç. | _ | 7 | 10 | | | ~: | Ψ. | ~ | _ | - | - | | | m / | m | <u>م</u> | _ | ~ | | / | ٠. | • | ~ | ٥. | | 01 | | : 10s | 2, | 13 | 10FC | 2084 | א לי | 1395 | 146 | 573 | 628 | 646 | 650 | 1334 | 305 | 5(| 412 | 128(| 101 | 383 | 29(| 1003 | 215 | 2086 | 633 | 1927 | 1863 | 5654 | 1325 | 179 | 1031 | 1834 | 3 | 632 | 246 | ਲ
(| 1705 | 243 | 460 | 290 | 1460 | 653 | 477 | 843 | 325 | 100 | 762 | | OFO | 750 | ם ני | 787 | 130 | 609 | 586 | 675 | 832 | 619 | 403 | 0 | 443 | 147 | 0 | 368 | 197 | 013 | 211 | 670 | 629 | 991 | 221 | 532 | 1238 | 715 | 957 | 810 | 81 | 670 | 123 | 738 | 687 | 519 | 604 | 694 | 009 | 611 | 486 | 843 | 291 | 0 | 791 | | 1 1 | 1 1 | ٦ - | -
- | -, ، | | · ~ | _ | · ~ | - | - | | 7 | 1 1 | _ | ~ |
7 | 7 | - | 1 2 | Н | | 1 2 | 1 | 1 1 | ~ | | ~
~ | ٠, ٠, | <u>ب</u> | ,, | ٠, | . | 7 1 | - | | 1 | - - | | | д | , | - | | ᅩ | - | ٦ + | | 1 ~ | 2 | 2 | 7 | 2 | 2 | 7 | 7 | 7 | 7 | 5 | 7 | 7 | က | 3 | m | n | c | 3 | ٣ | c | m | ლ (| · C | m · | 4 | 4. | 7' ' | φ, | 7 . | 4 | 4 | 4 | 4 | 4 | 4 | ٠ . | σ, | 2 | | r | ស្រ | ۰ ۵ | y [| -12 | -10 | -8 | 9- | -4 | -2 | 0 | 7 | 4 | 9 | 8 | 10 | 12 | -11 | 6- | -7 | -5 | ۳- | 7 | , —(| co | S | 7 | , | 11 | -12 | -10 | יס
ו | 9 • | 7 (| -2 | 0 | 2 | 4 | 9 | œ | 07 | 7. | -13 | | 10s | 88 | 0 0 | 106 | 72 | 27 | 10 | 23 | 18 | 17 | 33 | 27 | 44 | 19 | 25 | 16 | 27 | 49 | 29 | 22 | 84 | 16 | 24 | 31 | 419 | 56 | 19 | 32 | 23 | 70 | n G | 0 0 | 81 . | - 0 | 28 | 54 | -1 | 23 | 26 | 28 | 26 | 2 fr | 87 | | 10Fc | 4655 | 3166 | 252 | 514 | 5 | 774 | 1246 | 1141 | 963 | 749 | 310 | 4048 | 2369 | 1189 | 829 | 664 | 756 | 1900 | 1339 | 81 | 841 | 1226 | 788 | 6174 | 7.14.7 | 344 | 1163 | 2549 | 391 | 263 | 000 | 2000 | 1000 | 1344 | 769 | 108 | 310 | 3129 | 306 | 529 | 423 | 7
2 | | 10Fo | 4431 | 786 | 219 | 500 | 173 | 35 | 519 | 000 | ٦
8 | | | 0 0 | _ | | | | | | | | | | | | | | | 5 | > 0 | > 0 | ·
> | | × | 00 | > C | 0 | 0 | ~ | ٦ | ~ | | ~ | ٦ | 7 | 2 | 7 | 7 | 7 | 7 | 7 | m i | က | ო : | m | m · | m | 4. | 4 | 4. | 3 7 | 4 < | . . | ኋ ሊ | י כ | Ωú | ם כ | ກເ | n 1 | ა, | ره | y Q | ۰ , | י פ | י ס | - | | ڃ | 7 4 | α | 10 | 12 | - | ო | 5 | 7 | 6 | 11 | 0 | 7 | 4 | 9 (| œ | 10 | 12 | H . | m | ι
Ω | 1 | σ, | 7 | 0 (| ν. | 4.0 | 0 0 | ם כ | 1,0 | 7 - | ٦ , | י ר | י כ | \ | ٦, | 7 | - | 4 | 9 0 | α ς | 7 | 4 | | 10s | 26
21
19 | 30 | 15 | 18 | 65 | 48 | 33 | 31 | 89 | 21 | 44
25 | 19 | 21 | 81 | 81 | 77 | 39 | 16 | 83 | 14 | 21 | - | 7 | 67 | 79 | 20 | , , | 48 | 2 % | 13 | 17 | 20 | |------|--------------------------|-----------------------|--------------|--------------|-------------|-------------|--------------|----------|----------------|----------------|----------|------------|------|------|-----------|-----|---------|-------|------|----------------|--------|----------|----------------|------|-----------|-------|----------|------------|-------|---------------|------------|-------------| | 10Fc | 321
1457
1299 | 915
1571
1554 | 782 | 822 | 297 | 984 | 1671 | 1440 | 50 | 1746 | 280 | 720 | 196 | 242 | 121 | 609 | 1768 | 440 | 57 | 1303 | 6891 | 96 | 25 | 899 | 233 | 101 | 378 | 854 | 119 | 1392 | 721 | 2041 | | .0Fo | 331
580
215 | 694
601 7
524 1 | 710 | 174 | 263 | 943 | 109
386 1 | 552 | 89 | 602 1 | 513 | 731 | 943 | 300 | 216 | 648 | 990 1 | 483 | 89 | 730 | 537] | 0 | 0 | 660 | 707 | . 661 | . 686 | 190 | . 201 | 1428 1 | 693 | 924 | | i a | 888 | ~ ~ | • | | - | - | ~ | 4 | , | ٦. | - | 1 | | | | | _ | | | - | - | | | | | | | | | | | | | × | 2222 | | | | | | | | | mr | | m | ٣ | 4 | 7, | 1 d | . 4. | 4 | φ, | . 4 | ٠ 4 | | | | | | | | | 2 | | | | ء | 8 9 4 (| 7-0 | 140 | 8 01 | -11 | 6- | ر
د ا | 1-1 | , (| m u | ٠ ٦ | 6 | 11 | -12 | -10 | 0 Y | -4 | -2 | 0 (| N 4 | . 0 | 8 | 10 | -11 | ן ן
שר | ٠ ر٠ | י נ | 1 | | ·m | 2 | 7 | | 10s | 68
1
36 | 6 /
25
82 | 34
35 | 23 | 20 | 35 | 157
21 | 33 | 21 | 56
25 | 26 | 24 | 32 | 26 | و ر | 25 | 39 | 25 | 1.9 | 20 | 23 | | 41 | 52 | 0 7 0 | r (C | 28 | 80 | 29 | 65 | 42. | 11 | | 10Fc | 250
170
985 | 314 | 2934
2088 | 253 | 720 | 667 | 210 | 274 | 2007 | 8/ | 358 | 971 | 389 | 671 | 330 | 992 | 1607 | 1527 | 776 | 1009 | 718 | 80 | 393 | 54/ | 1119 | 320 | 1054 | 149 | 708 | 349 | 559 | 646 | | 10Fo | | 371 | ٦ | 2222 | * | 911 | | 7 | 7 | 1 | · & c | ဆထ | 8 | œ c | _∞ α | , ω | 8 | 8 | ω (| ת ס | 0 | 6 | σ. | o 0 | ם ע | 6 | 6 | 10 | 0 0 | 200 | 10 | 10 | 10 | 10 | 10 | 11 | 11 | | ч | 11. | 3 22 | 1-1 | და | 7 | -10 | ρ
 | -4 | -2 | 2 0 | 4 | 9 | 80 | 10 | ן ן
טר | -5 | -3 | 7 | r | o ro | 7 | σ, | φ ₍ | 0 7 | - 2 | 0 | 2 | 4 | 9 | 80 | 6-1 | -7 | | 10s | 21
24
34 | | | | _ | | | | 42 | | | | | | | 10 | | 12 | | 1 | c | | | | | | | | | 42 | 31 | 22 | | 10Fc | 1502
656
451 | 414
615
256 | 1394 679 | 571
1732 | 5801 | 968 | 1817 | 142 | 540 | 1416 | 2248 | 3709 | 3359 | 2743 | 67.03 | 281 | 241 | 210 | 759 | 605 | 2727 | 79 | 9791 | 832 | 1267 | 3795 | 1395 | 253 | 009 | 175 | 1.263 | 2172 | | FO | 1540
678
429 | 402 | LO. | | 1 10 | 20 4 9 | 2 | | 2 52 2 14 | _ | 2 | | ٠ | 4446 | | | | | | | | | | ., | · · | ., . | -, - | | | | | | | 2 | | | | | | | | | | | m | | r | 2 1 2 1 4 1 1 | 1 1 2 | 0 8 | 4 0 | 2 4 | 90 | 0 | 2 . | д σ | <u>ب</u> ، | ις | ლ, | ٠, | ~ | | | | | | | | | | | | 9 | 8 | 0 | 2 | (| თ : | - | | | ' | 1 12 -12 | | | | | | | -11 | | ٠, | | | | | | | | | | | | | | | | | | | -1 | | | | 10s | 164
17
21
48 | 24 | 20 | 16 | 36 | 21 | 188 | 82 | 3 5 | 16 | 1.8 | 39 | 20 6 | 25 | 18 | 18 | 19 | 21 | 19 | 38 | 21 | 50 | 63 | 52 | 25 | 59 | 17 | 23 | 18 | 19 | 20 | 2.3 | | 10Fc | | 1704 | | | | | | | | | 96 | | 9 6 | | 122 | | | | | | | 150 | | 33.6 | 193 | 350 | 66 | | 21 | 146 | ဂ : | 2 | | 10Fo | 164
1181
391. | 337 | 2255
3034 | 855
539 | 582
1105 | 1245 | 924 | 633 | 1962 | 1314 | 928 | 269 | 360 | 232 | 240 | 157 | 345 | 1054 | 089 | 217 | 410 | 207 | 322 | 282 | .987 | 8688 | .251 | 24 | 269 | 491 | 556 | 711 | | - | | | | - | | | - | | | | - | | ٦, | | - | | | | , – | _ | Α, | —
— . | - , | · | 7 | - | | ٦, | ~ · | | ٠, | ⊣ | | × | വവവ | 5 | 5 | വവ | 9 | 9 9 | و ر | 6 | و ه | 9 | 9 | 9 | ٦ ٥ | ٠, | 7 | 7 | ٦ ، | ٠ ر | . ~ | 7 | ۲ ، | - 1 | - & | 8 | 8 | æ | ထ | σ, | ω , | သာင | ∞ α | a | | ч | 9111 | | നഹ | 6 | 11 | 8 9 | -4 | 7.5 | o 0 | 4 | 9 | ж <u>г</u> | 10 | 6-1 | -7 | -5 | ۲.
د |
- | ı m | ທີ | ر
ر | ٦ ر | -10 | 8- | 9- | -4 | -2 | 0 (| 7 | 4 A | ه ه | o | | 10s | 28
29
19
55 | 52
80 | 17 | 42 | 1 44 | 18
26 | 38 | 30 | 30 | 20 | 42 | 35 | 4 t | 20 | 23 | 56 | 25 | 7 | 20 | 28 | 42 | , o | 49 | 24 | 41 | 48 | 37 | 21 | 41 | 77 | 27 | 71 | | 10Fc | 588
783
721
461 | 463
2123 | 792 | 271
899 | 110 1809 | 1044
950 | 570 | 1342 | 482 | 1032 | 277 | 529 | 280 | 1256 | 1214 | 199 | 440 | 106 | 1405 | 1284 | 296 | 814 | 287 | 997 | 7.49 | 35 | 1820 | 355 | 3426 | ንሃዕ
ንዳዳራ | 0000 | ר
ר
ר | | 10Fo | 657
779
693
504 | ٦ | 0000 | ᅩ | 1111 | 7 | ထောင | ထထ | ထတ | თ თ | 6 | ט כ | 10 | 10 | 10 | 110 | 1. | 11 | 11 | 12 | 7 7 | 12 | 13 | 13 | 13 | - T | 14 | 15 | 7 | ⊣, | <u> </u> | | | | - ۱ | 1 | | ڃ | 6 S C 6 | _ | <u>~</u> | o 1 | ~ . | α α | | -, ب | | | _ | | | | | | | | | | | | | | | | | • |------|--------------|------|------|------|------|------|----------|----------|---------|----------|------------|------|------|------|------------|-----------|------------|------|------|------|------|------|-------|------|------|------|----------------|----------------|--------------|------------|------------|------|----------|------------|------------|--------------|----------|-------|-----------------|--------|----------| | 10s | 94 | 45 | | - | | | 20 | | | 29 | 18 | 59 | 33 | 25 | 35 | | | | | | | | | | 36 | | | | 21 | | 21 | | 80 | 67 | 16 | | 17 | 20 | 34 | 3.7 | 19 | | 10Fc | 130 | 262 | 115 | 143 | 846 | 253 | 1690 | 1827 | 1699 | 1298 | 455 | 3149 | 2572 | 460 | 348 | 438 | 1383 | 2227 | 1750 | 79 | 931 | 1993 | 176 | 466 | 252 | 61 | 1.65 | 927 | 721 | 3367 | 355 | 1476 | 1579 | 4193 | 1284 | 25 | 962 | 1105 | 853 | 344 | 880 | | 10Fo | 94 | 236 | 0 | 116 | 3154 | | | | | | | σ. | | 1117 | 0 | - | | - | y y | ာဖ | 9 | 9 | 9 | 9 | 9 | 9 | | ᅩ | ٦, | i | _ | 7 | 7 | 7 | 7 | ~ | 7 | 7 | 7 | 7 | 7 | 7 | 2 | ٣ | ო | ٣ | ٣ | ٣ | ٣ | r | m | . m | e | ٣ | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 4 | 4 | 4 | 4 | 4 | 2 | S | 2 | | ᇨ | 20 1 | - თ | 11 | -12 | -10 | 8 | 9 1 | -4 | -2 | 0 | 7 | 4 | 9 | æ | 10 | -11 | 6- | -7 | 15 | -3 | - | - | ٣ | 5 | 7 | 9 | -12 | -10 | -8 | 9 . | -4 | 7- |) | ? | 4 | 9 | 80 | 10 | -11 | 6- | -7 | | 10s | 23 | 31 | 36 | 41 | 17 | 29 | 44 | 17 | 16 | 17 | 21 | 109 | 57 | 44 | 27 | 23 | 15 | 14 | 28 | 32 | 19 | 38 | 75 | 21 | 41 | 28 | 18 | 22 | 26 | 25 | 77 | 65 | 670 | 36 | 11 | 11 | 29 | 145 | 23 | 49 | 41 | | 10Fc | 788 | 457 | 1727 | 1841 | 459 | 2060 | 3463 | 984 | 770 | 848 | 756 | 240 | 284 | 1404 | 1096 | 1349 | 1056 | 808 | 290 | 1977 | 066 | 492 | 143 | 1645 | 3297 | 1551 | 861 | 1844 | 2119 | 479 | 1540 | 248 | 3/3 | 17/2 | 1079 | 1195 | 1317 | 154 | 297 | 507 | 1219 | | 10Fo | 791 | 1 1 | r Cr | يد | 9 | . ~ | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 8 | 8 | ဆ | 8 | 8 | æ | 8 | 8 | 8 | 8 | 6 | 9 | 6 | 6 | 6 | 6 | 0 | o. | o و | 2 9 | 2 9 | 2 9 | <u> </u> | 0 | 0 | 0 | 01 | 0 | Ξ | - | | ч | 10 | 16 | ۲- | -5 | ų | - | 1 | က | 2 | 7 | σ | -10 | 8 | 9- | b - | -2 | 0 | 7 | 4 | 9 | 80 | 9 | -7 | -5 | -3 | -1 | , 1 | en · | S) | · · | p (| 0 < | יי
ו | 7 (|)
) | 7 | 4 | 9 | ω | 0
0 | . L- | | 10s | 24 | 35 | 44 | 34 | 61 | 56 | 28 | 30 | 29 | 21 | 117 | 25 | 29 | 24 | 40 | 7 | 26 | പ |
22 | 19 | 28 | 15 | 13 | 11 | 32 | 23 | 16 | .26 | ; | 97 | 7 0 | 97 | 10. | ם
דום | 35 | 13 | 14 | 91 | 23 | 36 | 39 | | | 203 | 44 | 30 | 31 | 43 | 45 | 57 | | 10Fc | _ | | | | | | | | ∵ | _ | | | | | | | | | | | | | | | | | 1103 | | | | | | | | | | | | 4 | ň | 5 | | 10Fo | 167 | 336 | 246 | 426 | 278 | 689 | 895 | 456 | 584 | 279 | 260 | 589 | 553 | 923 | 306 | 0 | 963 | 0 | 721 | 147 | 936 | 231 | 779 | 078 | 480 | 365 | 1071 | 127 | 0 0 | 089 | 907 | 000 | ט מ | טינ
טינ | 215 | 544 | 670 | 76 | 457 | 310 | 709 | | 1 1 | 4 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 1 | 4 1 | 4 | 4 | 4 | 4 | 4 | Ŋ | | | | | | | | | | | | | | | | _ | 7 | | | | | | ري
ا | S | 2 | | ٠ بد | 2 2 | 7 | 2 | 2 | 7 | ლ - | <u>س</u> | <u>~</u> | <u></u> | E . | <u>.</u> 3 | 7 | 7 | ۲4 | 4 | ٠, | – | | | _ | 7 | - | - | 7 | - | ~ | _ | . . | N (| 7 C | 7 C | 1 c | 1 0 | 4 (| v (| .V (| 7 | 0 | 7 | 7 | m | | ų | -4 1 | 0 | 2 | 4 | . 0 | . 5 | €.
 | 7 | - | <u>ო</u> | ro
- | -4 | 7- | 0 | 7 | 13 | 11 | 6 | -7 | 2 | 61 | -1 | | m | 2 | 7 | 6 | | 77 |) q | ט כ
ו ו | > < | י ר
ו | ۱ د | > 0 | 7 ' | 4 | 9 (| ω , | 10 | 11 | | | | | | | | | | | | | | | | | | ı | 1 | | | | | | | | | | | | I | 1 | | | | | | | | | | | 1. | | 10s | 198 | | 17 | 14 | 91 | | | | | 1.5 | , | - | | | | | | | | | | | | 37 | | | | | | | | | | | | | | | 20 | | 16 | | 10Fc | 301 | 2657 | 1701 | 860 | 1664 | 2299 | 440 | 1100 | 099 | 1146 | 238 | 140 | 385 | 481 | 815 | 1598 | 587 | 338 | 118 | 1672 | 1155 | 302 | 10 | 844 | 393 | 122 | 943 | 36/1 | CTT | 1236 | 2793 | 5,7 | 745 | 000 | 000 | 3,00 | 101 | 1067 | 786 | 1210 | 426 | | 0Fo | 199
939 | 946 | 771 | 868 | /31 | 447 | 496 | 045 | 657 | 084 | 280 | 144 | 111 | 787 | 810 | 019 | 597 | 390 | 75 | 589 | 068 | 267 | 0 | 915 | 616 | 0 | 075 | 979 | 777 | 780 | 765 | 2 | 708 | 200 | 7 0 0 | אר ר
אר ר | 311 | 249 | .072 | 354 | 483 | | 1 1 | 4 4 | 4 2 | 4 1 | 4. | 4. | 4. | 4. | -1 | Φ. | | <u>.</u> | | | | | | | | | | | | | | | 4 | 4 1 | مار
مار | , | 7 7 | 1 0 | . 4 | . 4 | ٠ - | , יי | | • | | 4 | | | | * | 4 4 | 4 | 4 | ማ • | 7' ' | 4. | 4. | 4. | 4 | σ, | ₫ (| n ı | ດເ | ر ک | n ı | <u>ر</u> | Ωı | ٠ ١ | ഹ | n. | s i | ις. | 2 | 9 | 9 | 9 | 9 (| ه ر | ه د | ט כ | ی د | ی د | ی د | ט פ | י כ | - r | ، - | ~ r | - 1 | - 1 | _ | | æ | -12 | -8 | 9 | -4 | 7 (| 0 (| 7 . | 4,4 | 9 ; | ω , | 10 | 11- | וע | - 1 | r
C | ا
بىرى | ⊣ , | (| m ı | n ι | ۲ , | o | 11 | -12 | -10 | 8- | 9- | 1
4 (| 7 0 | ۰ د | 1 4 | ی د | α | 10 | 1 - | 7 7 | ן
אינ | - 1 | n
د | Ϋ́, | ⊣ | | 10s | 35
25 | 35 | 20 | 46 | 220 | 77 | 30 | 36 | 53 | 7.7 | 31 | 7 7 | , I | 104 | 77 | π · | 7 , | 134 | ; | 23 | 31 | ٦ ; | 56 | 20 | 43 | 56 | 40 | ς.
γ | 20 | 4 9 | · | ۱ | 23 | 200 |) - | ٦, | , , | 101 | 7 U | 000 | 50 | | 10Fc | 1192
1679 | FO | 1432 | 10 | _ | m m | ~ | 3 10 | E | 9 1 | 7- | ,,, | ۰ ر | | • ` | _ (| ~ (| 1 | 3 | i | , - | ' ' | ٠, (| , . | . , , | ų. | ĩ | ī | 1 | 1 | ، ر | . ` ' | 7. ' | - 1 | Ϊ΄ ' | 1 | 1 | -, (° | , u | - 4 | 2 |) | () | . < | ī | 7 5 | 7 7 7 | ם
נוד
נוד | | í | | 0.8 | 32
24
34
34 | 26
70
27
52
34 | 22
22
22
22
22 | 50
50
50
50 | 33
33
33
23
23 | 25
25
25
25
25
25
25
25
25
25
25
21
21 | |-----------|---|--|---|---|--|---| | 0FC 1 | | | | | | 932
366
1388
2254
708
734
748
304
440
11114
909 | | | | | | | | | | 10Fo | 51
32
66
137
18 | 87
255
141
19
3 | 108
210
210
135
135
171 | 242
6
100
47
17
34 | 480
1792
2044
0
621 | 134
134
134
134
104
104
111 | | 7 | 00000 | 000000 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | . თ თ თ თ თ თ თ | | | × | 99999 | 00000 | | - 1 1 1 8 | | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | £ | -10
-8
-6
-4 | 07498 | 11. | 1
3
7
-10
-8 | 0 4 2 0 2 4 8 | | | 10s | 33
32
24
19 | 19
32
27
60
29 | 20
22
22
31 | 33
35
32
32 | 46
30
37
37
96
1 | 158
30 .
22
64
32
16
19
19
11
14
25 | | 10Fc | 438
018
133
254
530 | 149
649
849
3330
783 | 363
363
965
704 | 535
53
53
863 | 466
967
170
530
273
37 | 543
237
1611
1018
74
1298
732
1932
1932
135
2220
960
960
925 | | 0 1 | | | | | | | | 10F | 48
100
113
125
59 | 1111
67
79
27
27
81 | 114
114
37
37
97 | 135
123
123
63 | 40
99
17
17
56
21
80 | 495
189
1581
965
64
1272
750
1681
146
2114
895
911 | | ~ | ~~~~~ | ~~~~~~~ | | | & & & & & & & & & & & & & & & & & & & | & & & & O O O O O O O O O O O O O | | يد | 00000 | 660000 | 170007 | 1 | 12 12 12 12 12 12 12 12 13 13 13 13 | 113 | | ۳ | 3 1 1 1 1 2 | 2 - 8 9 - 1 - 1 | 1044064 | 5 3 3 4 4 6 6 | 04400445 | 0 7 2 3 3 3 7 5 7 6 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 | | | | , , , , | , , | | | 3 1 1 1 1 | | 0s | 25
17
24
36
38 | 36
13
13
40 | 23
24
29
17 | 19
19
16
23 . | 78
42
42
25
28
23 | 34
20
22
22
21
33
33
11
11
11
11
11 | | ر.
ري | . 0 0 H 2 H | пнань | 1-04044 | 7 4 9 5 9 4 | 6674-198 | 5 1 8 0 2 8 2 2 2 5 4 2 0 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 10Fc | | | | | | 2935
751
548
640
620
998
2282
522
1045
1972
1302 | | 10Fo | 644
889
759
912
659 | 993
962
277
721
721
587 | 993
459
007
007
178
305 | 325
325
331
778
503
0 | 202
305
1307
1557
1036
833
2984 | 929
707
707
519
689
689
689
689
689
737
737
906
972
247 | | 7 | 2 1 1 8 8 8 8 × 1 1 8 × 1 1 8 8 × 1 1 8 8 × 1 1 8 × 1 1 8 × 1 1 1 1 | 88 11 8 11 11 11 11 11 11 11 11 11 11 11 | | | 8
8
1
8
1
8
1
8
2 | 88 1 2 1 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | <u>يد</u> | | പലപപപ <i>റ</i> | 1000000 | 100000 | | 88884444444444 | | _ | 133 | 162760 | 1089470 | 24980 | 19673811 | 8 5 7 6 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 | | | - 5
- 1
- 1 | โ | 1 1 1 1 1 | Ä | -11
-7
-7
-3
-1 | 201-
112-
124-
144-
144-
144-
144-
144-
14 | | Ø | 12837 | 17.8983 | 0 9 2 9 8 7 | 850 0 - 1 0 - | အက္အဝတ္က
က | 24
19
33
33
20
20
24
14 | | 10 | 2 2 2 4 4 2 1 2 2 4 4 2 2 1 1 2 2 1 1 2 2 | | | | | - | | 10Fc | 1958
28
72:
159: | 16]
132.
166]
762 | 360;
2056;
56;
76;
76; | 139
35
127
57
172 | 858
284
61
61
15
111
1111
418 | 733
2613
3221
1280
305
1767
691
469
212
362
656
758
1496 | | 10Fo | | | | | | 743
3224
1240
298
1676
671
170
342
697
805 | | 10 | 20
3
7
15 | 12 | 2001 | 12 | 288 | 1225
1166
1166
1155
1155 | | 7 | | | | | | | | 24. | | | , o o o o o r | L L L L L L | L L L L B B | | | æ | 11 00 00 00 00 00 00 00 00 00 00 00 00 0 | -109
-109
-16 | 0 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 L L S L L L L L L L L L L L L L L L L | 1
3
7
7
10
-10
-8 | 1 1 0 4 0 0 0 0 0 0 0 0 | | 10s | 21
18
15
19
25 | 62
25
29
29
21 | 103
30
44
32
23
23 | 21
23
14
48 | 22
32
32
41
41
1 | 2 2 3 3 3 3 5 7 1 1 1 8 8 8 7 7 8 8 8 8 9 7 9 8 8 9 9 9 9 9 9 | | 10Fc | 1188
1607
1045
666
590 | 213
792
449
1042
410
826 | 108
693
391
1540
808
958 | 810
892
107
429
54 | 968
333
160
613
262
84 | 988
1111
474
364
821
1037
770
770
25
867
524
524
1210 | | .0Fo 1 | | | 104
689
400
.473
943 | | | | | | | _ | | | _ | 958
1010
1010
1010
1010
1010
1030
1130 | | - | | | | | | 0000000000000000 | | × | 000000 | 100000000000000000000000000000000000000 | наннан | | | | | ч | | 8 - 1 - 6
2 - 1 - 2
2 - 2 - 2 | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 8 9 1 6 | 20 0 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2 2 2 1 | ٠ | | | | | | | | | | | | | | | |----------|------|------|------|------|------|-------|------|-------|------|------|----------|-----|------|-------|----------------|------------|------|----------------|----------------|------------|------------|---|-----|------|--------|-----|------------------|------|-------|--------|---------------|-----------------|----------------|------------|----------------|--------------|------|---------|------------|------------|----------|------|--------| | 10s | , | 40 | 2,5 | 23 | 20 | ; - | 32 | 2 00 | 7 1 | 30 | 7 | 25 | 27 | 20 | 37 | 16 | 34 | 29 | 24 | 30 | 39 | - | 39 | 33 | 52 | 37 | 64 | 32 | 30 | 151 | 56 | 24 | ۲, | ⊣ (|
70 | | 52 | 80 | 22 | 56 | 48 | 34 | 47 | | 0Fc | 6.0 | 628 | 991 | 632 | 1032 | 144 | 869 | 593 | 517 | 709 | 107 | 663 | 367 | 1036 | 846 | 219 | 707 | 2036 | 1438 | 375 | 186 | 164 | 846 | 966 | 311 | 571 | 291 | 1443 | 9201 | 125 | 784 | 629 | 200 | 177 | 340 | 757 | 200 | 313 | 973 | 229 | 825 | 325 | 456 | | 0Fo 1 | 963 | | | | 1 1 | , | | 2 2 | 13 1 | | | | | | | | 51 | | | | | | | | | | | | | | | | | | | <u>.</u> | ກ : | 2.5 | 2 5 | 2 5 | or 5 | 7 7 | 7 2 | .4 | 14 | 7 | 14 | 7 | | ᅶ | ų | 9 9 | 9 49 | 9 | 9 | 9 | 7 | _ | - | | | | ~ | 7 | 8 | ω | 80 | 89 | ω | 80 | 8 | ου | 9 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 0.1 | 07. |
 | 7 . | + 0 | - · | , . | _
_ | 0 | 0 | 0 | 0 | 0 | | E | 1 | - 2 | 0 | 5 | 4 | 9 | 6- | -7 | ي ا | 1 | 1 | - | m | 5 | 8- | 9 . | -4 | -2 | 0 | 7 | 4 | 7- | -5 | -3 | -1 | - | c | 9- | -4 | -2 | > (| 7 4 | י נ | ٠.
د | T (| 0.7 | 0 . | 9 | -4 | -2 | 0 | 7 | 4 | | 10s | , | 25 | 63 | 26 | 47 | 23 | 22 | 7 | 2.7 | 35 | 49 | 56 | 23 | 22 | 27 | 34 | 19 | 29 | 27 | 22 | 31 | 21 | 42 | 79 | 37 | 62 | 24 | 39 | ٦ | 37 | ٦ (| ر
د د
د د | 55 | 72 | 7 C | 0 0 | , , | 200 | 27 | 52 | 25 | 16 | 12 | | 0Fc | 836 | | | | .0Fo 1 | 783 | | | | 1 | 12 | 12 | 12 | 12] | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12] | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 175 | 7.7 | 12 | 12 | 1 0 | 12 7 | 1 5 | 7 | 1 . | 77 | ۲۲: | 13 | 13 | | 13 | | . بد | G | 9 | 9 | 9 | 9 | 9 | 9 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | æ | 80 | 89 | ω | œ | œ | œ | 6 | 6 | 9 | σ | σ, | ٥ ا | 10 | 2.5 | 2 5 | 2 2 | - | ; [| ; ; | 1 - | 1,5 | 71 | ٦ , | ∸. | | -4 , | 7 | | ŗ | 9- | -4 | -2 | 0 | 2 | 4 | 9 | 6- | -7 | -5 | i, | -1 | ~ | m | S | -8 | 9- | -4 | -2 | 0 | 2 | 4 | -7 | 7 | ۳
ا | Ţ | , , , | , ن | 9 , | i
i | 7 0 | <i>ر</i> | ו |) ר
ו |) (| - 1 | 1 6 | 7 - | 11- | ו
זע | 7- | n c | 2 | | 10s | 28 | 99 | 101 | 49 | 35 | 28 | 34 | 25 | 31 | 30 | 87 | 69 | 25 | 39 | 24 | 48 | 35 | 70 | 23 | 28 | 47 | 45 | 39 | 47 | ٦ ; | 34 | 31 | - : | 7.5 | ا
ا | ۲.
۲. | 36 | 62 | 101 | 31 | 20 | , 6 | 2 6 | יים
ת | 35 | 22 | 67 | ٦
۲ | | 10Fc | 946 | 316 | 81 | 1355 | 2272 | 166 | 419 | 1192 | 1556 | 1303 | 208 | 48 | 1301 | 404 | 828 | 521 | 970 | 518 | 351 | 1243 | 1290 | 1472 | 782 | 795 | 126 | 909 | 1035 | 24 | 21/9 | 223 | 1022 | 2415 | 267 | 270 | 778 | 870 | 0.56 | 2 5 5 5 | 44.000 | ימת
ימת | 169T | 100 | 400 | | .0Fo | | | | _ | | _ | _ | | | | _ | _ | | _ | ٠. | | | | _ | | _ | _ | | | _ | | | _ | | _ | | | | | | | | | | | 1593 | | | | - | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | Ξ. | 11 | 11 | Ĺ | 11 | 11 | 11 | 11 |] | 7 | Ξ, | Ī | 11 | | 11 | Ξ: | 12 | 77 | 77 | 7 7 | 77. | 12 | 12 | 12 2 | 12 | 12 | 12 | 12 | 12 1 | 1 5 | 10 6 | 7 7 7 7 | 1 21 | 12 | 7 | | ㅗ | 9 | 6 | 9 | 9 | 0 | σ | 6 | 9 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 11 | 17 | 11 | Ξ: | 7 | | 7.7 | 12 | 7.7 | 0 0 | > 0 | > c | ٥ | o c | · C | 0 | 0 | 0 | 0 | Н | - | ~ | · - | | ⊣ ⊢ | ٦ ,- | ٠. | 4 | | æ | 6- | -7 | -5 | -3 | -1 | Τ. | en. | 5 | 8 | 9 - | -4 | -2 | 0 | 7 | 4 | -7 | 7, | | | _ | m · | b | 2 | ٠, | -12 | -10 | χ (
1 | P | ן ו | 7 0 | 2 | 1 4 | 9 | 80 | -11 | 6- | 7- | ی
ا | יי) ל
! | ا ا | -
- | ÷ (* | , | | 10s | 41 | | | | 10Fc | 736 | 909 | 166 | 447 | 940 | 295 | 206 | 439 | 692 | 235 | 1086 | 243 | 1484 | 964 | 2289 | 504 | 920 | , 68 | /611 | 108 | 7.00 | 171 | 215 | 332 | 717 | 700 | 100 | 750 | 6.5.1 | 202 | 680 | 196 | 1554 | 86 | 1375 | 1612 | 1938 | 9 | 573 | 92.5 | 195 | 1071 | •
• | | 10Fo | 795 | 630 | 153 | 441 | 902 | 301 | 188 | 459 | 646 | 316 | 1071 | 261 | 1363 | . 881 | 8802 | 483 | 4.4 | 700 | 9911 | 0 0 | 243 | 080 | 239 | 400 | 120 | 010 | 107 | 286 | 07 | 192 | 680 | 198 | 1489 | 92 | 1282 | 1559 | 2016 | 0 | 590 | 927 | 41 | 1018 | }
} | | 7 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 11 | 11 | 11 | 7.7 | 11 | - ; | - ; | 11 | 4 - | - - | Ϊ, | T . | 7 , | 7 - |
 | 7 - | 4 c | 11 | ; = | ; - | - | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | | ; ; | 11 | 11 | j
I | | × | 11 | 11 | 12 | 12 | 12 | 12 | 12 | 13 | 13 | 1 | | Η, | - | | → . | ٦, | | , - | ⊣ (| V (| 7 (| 7 (| 7 (| 7 (| 7 0 | 4 0 | ۱ ر | 1 0 | 1 ~ | ı m | e | æ | m | 3 | m | c | က | m | , m | ۷ ۲ | 4 | 4 | | | ב | 1 | m ' | 9- | -4 | -2 | 0 (| 2 | ŗ, | | -11 | 6 | | | 1 | 7 - | | יטרי | יו כ | - 6 | 77 | 07- | 0 (| 0 5 | 7 (| 7 C | , | 1 4 | . (c | œ | -11 | 6-1 | 1- | -5 | -3 | -1 | - | m | 5 | 7 | -10 | φ
• • | 1 | | | 10s | 73 | | | | 10Fc | 2465 | 3839 | 1231 | 356 | 1442 | 1430 | 204 | 576 | 849 | 284 | 94 | 490 | 341 | 1206 | 1074 | 1014 | 000 | 37. | 306 | 1170 | 6111 | 2007 | 700 | 2350 | 2916 | 422 | 345 | 630 | 782 | 87 | 51 | 828 | 1132 | 873 | 80 | 374 | 75 | 780 | 1052 | 335 | 173 | 1446 | | | 10Fo | 2250 | 3774 | 1175 | 386 | 1397 | 1.408 | 9/1 | . 585 | 88.5 | 254 | ۰. | 469 | 27.7 | 114 | 1001 | 199 | 757 | נטנ | 767 | 700 | 2457 | - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 | 607 | 2268 | 2884 | 434 | 391 | 684 | 810 | 110 | 61 | 752 | 1038 | 822 | 0 | 395 | 117 | 802 | 1033 | 319 | 186 | 1371 | | | 7 | 10 | 10 | 10 | 10 | 707 | 0,7 | 0 7 | 10 | 2 | 10 | 10 | 10 | 2 . | 7 0 | 2 6 | 7 0 | 2 5 | 2 - | 2 - | 9 6 | 2 - | 2,5 | 2 5 | 2 - | 10 | 2 - | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | | | × | 7 | 2 | | | | | | | | | | | | | | | | | | • | r < | ۰ < | 7 9 | • 4 | 4 | . 4 | 4 | 4 | 2 | 2 | 2 | Ġ | S | S | വ | S | 'n | 2 | 9 | 9 | 9 | 9 | | | ч | -4 | 7 9 | 0 | N • | 4, 4 | ه د | χ, α | 77- | וע | 7- | <u>۱</u> | | 1 | ٦ ٣ | ייר | י נ | ٠ ٥ | -12 | 101- | 2 4 1 | י
ו | 1 | r C | 1 0 | 2 | 4 | 9 | 89 | -11 | 6- | 1-1 | -5 | ر 1 | -1 | 7 | د | S | 7 | -10 | -8 | 9- | -4 | | | 10s | ç | 7 6 | 7 4 | - | 104 | 3 | , - | 4 1 | 7 6 | י ע | ט כ | 3.5 | י
מי | 50 | 7 (| 39 | 39 | 36 | 37 | 23 | 2 0 | 20 | 5 6 | 9 | 41 | 34 | 42 | 38 | 36 | 34 | 59 | 25 | 100 | 43 | 9 C | ۳, | 49 | 89 | 3 | 53 | 98 | 4.
د ر | 4° | 79 | |--------|------|------|-----|-----|----------|--------|------|------------|------|------|--------|------|---------|------|------|----------|----------|---------|------|----------------|----------|---------------|--------|--------------|-------|--------------|----------------|----------|------------|----------------|------------------|------------|-------------|------|----------------|-----------|-----|------------|-----------|--------------|----------|-------------|-----------|------------| | 10Fc | 100 | 770 | 321 | 181 | 500 | 845 | 133 | 758 | 086 | 2021 | 999 | 1.4 | 597 | 438 | 462 | 613 | 603 | 983 | 1107 | 759 | 200 | 345 | 595 | 929 | 712 | 1019 | 438 | 617 | 773 | 691 | 731 | 888 | 196 | 638 | 179 | 36 | 408 | 1154 | 419 | 572 | 257 | 514 | 6/5 | yaa
yaa | | 10Fo | 918 | | | | | | | | | | | | | | | 1 1 | , | | _ | | 7 | | 7 | 3 0 (| | ם ת | אָרָ
ק | 7 | | × | ď | | | 9 | 7 | 7 | | . & | 0 00 | | , - | 0 | | 0 | | - | - | - | - | | 2 | 2 | 2 | . ~ | 2 | 2 | ω, | 3 | 3 | 3 | 3 18 | 4 | 4. | 7 , | . | ח. | ດ ເ | η.
Ο (| ָ י | 9, | | | | 7 | | ď | ١ | 1 0 | -2 | 0 | 5- | ٦ (| 1 | -4 | | 1 α | י
ו | -4 | - 2 | 0 | | 1- | -5 | 3 | - | - | 8 | 9 | -4 | -2 | 0 | 7 | -7 | -5 | -3 | -1 | 7 | 9 | 1 4 | 7 0 | - | ດ | י ר | ⊣ • | ਰਾ (
ਹ | 7 7 | · · | 0 0 | ו ו | 4 | | 10s | 0 | 27 | 34 | 70 | 47 | 34 | 24 | 41 | · | 31 | 125 | 152 | 41 | 27 | 92 | 33 | 9 | 97 | - | 29 | 66 | 43 | Н | 35 | 38 | - | 48 | 41 | 44 | 35 | 42 | 70 | ν .
Σ. (| 70 | 0 7 0 | 27.
כר | ς. | ۲ , | 70 | ۲. c | 000 | 0 K | י ע
מ | 2 | | 10FC | 111 | 1497 | 705 | 154 | 366 | 917 | 979 | 328 | 95 | 818 | 27 | 201 | 756 | 1120 | 174 | 837 | 294 | 446 | 86 | 648 | 335 | 611 | 55 | 460 | 618 | 122 | 337 | 882 | 468 | 891 | 492 | 1041 | 000 | 202 | 143 | 141 | 130 | 100 | 7 (| 300 | 700 | 907 | 195 |) | | 0Fo : | 634 | | | | | | | | | | | | | | | 1 1 | 16.1 | 16.1 | 16 | 17 | | | | | | | | | | | | | | | * | 4 | 4 | 2 | ß | ß | 'n | S | ω. | ß | 9 | 9 | 9 | 9 | 9 | 9 | 7 | ۲. | 7 | _ | ۲. | ω | 8 | ω | 8 | თ | 6 | , , | - | | - | | | - · | 4 0 | 1 0 | 1 0 | 1 0 | 4 6 | 1 0 |) r | , ~ | , . | , m | , | | £ | 0 | 4 | 6- | -7 | ı
S | m
1 | -1 | 1 | c | 8- | 9 | -4 | -2 | 0 | 7 | -7 | 5 | -3 | 7 | | 9- | -4 | -2 | 0 | -3 | -1 | 6- | -1 | -5 | ا ع | Τ, | ⊣ c | nα | 9 4 | 1 | - 6 | 1 C | ,
, | 1 0 | , , | ی ۔
ا | 1 | 1 | ı | | 10s | 36 | 98 | 35 | 55 | - | 21 | 29 | 29 | 23 | 64 | 22 | 19 | 96 | 39 | 1 | 25 | 21 | 163 | 29 | 57 | 44 | 113 | 93 | 9
6 | 22 | 69 | 52 | 7.1 | 42 | 99 | ю .
Н | 000 | ر
م
م | 52 | ı - | 46 | 3.6 | | - 6 | 200 | 4 4 | 41 | 30 | ı | | 10FC | 1070 | | | | | | | | | | | | | | | .0Fo] | 1111 | | | | | | | | | | | | | | | 1 | 1.5 | 15 | 15 | 15 | 15 | 15 | 15 1 | 15 1 | 15 | 15 | 15 1 | 15 1 | 15 | 15 | 15 | 15 | 15 | 15 | 15 1 | 15 1 | 15 | 15 | 16 | . 91 | 16 1 | 16. 2 | 16 | ,
, i | 167 | 7 07 |
 | 7 7 | 1 9 | 16 | 9 | 16 | 9 | 9 | 9 | 9 | 16 1 | 16 1 | 16 | | | 74 | 9 | 9 | 9 | 9 | 9 | 9 | 7 | 7 | 7 | 7 | 7 | 7 | ထ | æ | æ | ထ | œ | თ | 9 | 0 | 6 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
- | ۰ د | | ٠. | - | - | - | - | ~ | ۱ ۸ | ٥. | 2 | 7 | 7 | 7 | | | ď | 91 | -4 | -2 | 0 | 7 | 4 | -1 | -5 | -3 | - | 1 | æ | 9- | -4 | 2 | 0 | 7 | -5 | ٦. | 7 | 7 | -2 | -10 | -8 | 9- | -4 | -2 | 0 (| 7 • | ਬਾ (| אינ | ۱
۱ | 1 | - 1 | _ | ľ | -10 | 000 | 9 | -4 | -2 | 0 | 7 | | | 10s | - | 19 | 7.1 | 33 | ~ | 54 | 46 | 23 | 103 | 45 | 120 | 31 | 37 | 45 | 156 | 39 | | 21 | 26 | 17 | 29 | 33 | 83 | 32 | 28 | 84 | 27 | c | 200 | 0 0 | 12 | . 4.4 | 45 | 31 | 26 | 89 | 27 | 37 | 20 | 35 | 61 | 145 | 45 | | | 10Fc | 167 | 907 | 480 | 892 | .86 | 331 | 583 | 579 | 386. | 624 | 138 | 865 | 439 | 541 | 81 | 655 | 134 | 860 | 276 | 1094 | 937 | 1167 | 202 | 916 | 732 | 102 | 411 | 25 | 507 | 707 | ر
د
د
د | 361 | 259 | 682 | 1604 | 73 | 410 | 1130 | 1647 | 414 | 644 | 22 | 425 | | | 10Fo | 0 | 936 | 478 | 784 | 0 | 280 | 602 | 211 | 301 | 522 | 120 | 871 | 420 | 563 | 173 | 579 | 0 | 967 | 267 | 1096 | 968 | 1142 | 166 | 915 | 780 | 82 | 436 | ט | 0/7 | 27.0 | ; C | 363 | 256 | 695 | 1615 | 69 | 350 | 1171 | 1706 | 446 | 577 | 146 | 438 | | | - | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 7. | 14 | 15 | 12 | 15 | 12 | 12 | 1.5 | 15 | 15 | 15 | ٠
ر | 12 | 0 4 | י ב | 7 . | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | | | * | 7 | 7 | œ | 8 | œ | ထ | æ | | - | | | 6 | | Ä, | H | Ä, | 4 | | | Α, | <u> </u> | ٠, | | Н. | 7 | 7 | 7 (| ν ς | 4 C | 4 C | 1 0 | 1 2 | c | ٣ | m | ٣ | ٣ | e | æ | m | 4 | 4 | 4 | | | æ | 7 | e | -8 | 9 - | -4 | -2 | 0 | 2 | -7 | 1.5 | -3 | 7 | 1 | 9- | -4 | 7. | • | ן
טנ | - 1 | -5 | | [, | ٦ ، | m i | ດຸ | -10 | i
S | 9 7 | , (| 1 C | 0 | 4 | 6- | -7 | -5 | -3 | -1 | 1 | 3 | 5 | -10 | -8 | 9- | | | 10s | 35 | 71 | - | 37 | 20 | 21 | 40 | 23 | 24 | 29 | 24 | 20 | 39 | 38 | 43 | 121 | 2.5 | 24 | C 7 | ٠, | ٦ ; |) C | 17 | 29 | 48 | η· | יר
עינ | 110 | 23 | 7 4 | 53 | 32 | 38 | 33 | 25 | 24 | 51 | 34 | 24 | 91 | 46 | 22 | 64 | | | 10Fc | 1053 | 220 | 37 | 313 | 597 | 1006 | 826 | 785 | 874 | 620 | 1481 | 790 | 108 | 2161 | 6/67 | 887 | 0 2 2 | 067 | 4 | 114 | 900 | 223 | 278 | 711 | 751 | 919 | 1167 | 186 | 1135 | 1895 | 259 | 480 | 1057 | 1234 | 594 | 708 | 357 | 602 | 121 | 72 | 1038 | 762 | 202 | | | 10Fo | 1101 | 192 | 0 | 285 | 617 | 1028 | 840 | 764 | 926 | 628 | 1448 | 771 | 40 | 2133 | 2363 | 121 | 770 | 00/ | 400 | ٥ | 0 0 | 155 | 307 | 707 | 167 | 000 | 7 6 6 | 7 | 132 | 730 | 212 | 489 | 174 | 265 | 611 | 702 | 340 | 632 | 24 | 92 | 983 | 810 | 159 | | | - | 14] | 14 | 4 | 4 | 4 | 4 | 4 | 4. | 4 | 4 | 4 | σ, | 4. | 4 | 4. | a | r < | Jr < | , · | . - | 7 4 | ਰਾ < | J . | . | ₹ < | . . | . < | . 4 | . 4 | . 4 | 14 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | | × | 0 | - | | | | | | | | | | ~ (| | | | | | | | | | | | | | | | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ß | 2 | 2 | S | ഗ | ر
د
د | S | | | ч | | -11 | | | | | | ~ (| m i | | | æ v | | | | c د | 1 - | # U | 9 - | → C | ז ת
ו | <u>۔</u>
ا |)
(| י ני |
I | ⊣ ` ດ | า ช | , - | α α | 9 | -4 | -2 | 0 | 7 | 4 | 9 | 6 - | ۲. | -5 | .3 | -1 | - 1 | ~ | , | | | 131 | 5 | 2 | 8 | , | 31 | 36 |) (| 971 | ď | מ | 80 | , (| 20 | 8
U | 9 | | | | | |-----|-----|--------------|------|----------|------|-------|------|--------------|-----|------|------|------|-----|-----|--------------|------|------|--------|-----|----------| | | | | | | | | | , (| • | • | | | | | | | | | 7 | 10 | 1 | 2 19 | | 7 | 3 19 | | עיי | 3 19 | | 4 19 | 0 | 7 | 1 20 | 1 | | | | | | | | | | | | | | , | 22 | 7 | 23 |) | 30 | 101 | T 7 T | 34 | 8 7 | r | 65 | , (| 99 | 7 | 7 | 112 | 0 | 9 | ٠
ر | 9. | ~ | | 617 | 10 | 1008 | | 827 | 201 | 707 | 597 | 000 | 000 | 681 | 1 (| 268 | 697 | 5 | 72 | 000 | 780 | 864 | | 322 | | | | | | | | | | 861 | ~ | , | ς. | , , | 4 | 4 | • • | 4 | 4 17 | , | 7 | | J' | G. |) (| ر
ر | ď | 7 | 3 |) (| | | _ | | m | | ρ | 9 | ٠ ، | 14 | -2 | 1 | 0 | c | 7 | -7 | ٠ (| ť, | ۲ | י | ì | ۰, | - | 99 | 156 | | | | | | | | | | | | | | 126 | | 17 | 000 | 700 | 599 | | 717 | 100 | | 353 | 89 | 3 | 332 | | 0101 | 1695 | | 133 | 000 | 200 | | | | | | | | | | 3.16 | | | | | | | | | | | | | | 2 | | _ກ | ٠ | 1 | m | ٠ | າ | د | | ກ | ~ |) | 4 | * | . | 4 | | 4 | | . | | 4 | | 1 | - | ī | 15 | , | ו | - | - | _ | ~ | , | 8 | | i | -4 | • | -2 | _ | • | | 2.4 | | - | ~ | 7 | 35 | - | 7 | 30 | 0 | 40 | _ | • | 24 | 20 | ,
, | 99 | | 20 | 32 | 1 | | | | | | | | | | 978 | 806 | | | | | | | | | | | | | | 7 | 1 | .,
 | 4 15 | | 4 15 | 1 0 | - | 5 15 | | · | 5 15 | | 2 | 7 |) | 5 15 | | C | 9 | , | | | | | | | | | | l
D | 73 | | | | | | | | | | | | | | 7 | 340 | ה
ה | 128 | , | 1122 | 1740 | - | 9 | 909 | | 563 | 000 | 976 | 44 | | 1045 | 7.77 | 5 | 499 | , | œ | • | | , | ٥ | 9 | , , | 6 14 | œ | , , | 9 | , | - | 7 | , | _ | 7 | | _ |